| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vciOLD.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑊 ) | 
						
							| 2 |  | vciOLD.2 | ⊢ 𝑆  =  ( 2nd  ‘ 𝑊 ) | 
						
							| 3 |  | vciOLD.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 | 1 2 3 | vciOLD | ⊢ ( 𝑊  ∈  CVecOLD  →  ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) )  →  ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 6 | 5 | ralimi | ⊢ ( ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) )  →  ∀ 𝑦  ∈  ℂ ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) )  →  ∀ 𝑦  ∈  ℂ ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 8 | 7 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ℂ ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ℂ ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝑊  ∈  CVecOLD  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ℂ ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥 𝐺 𝑧 )  =  ( 𝐵 𝐺 𝑧 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑥  =  𝐵  →  ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( 𝑦 𝑆 ( 𝐵 𝐺 𝑧 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑦 𝑆 𝑥 )  =  ( 𝑦 𝑆 𝐵 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  =  ( ( 𝑦 𝑆 𝐵 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ↔  ( 𝑦 𝑆 ( 𝐵 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝐵 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦 𝑆 ( 𝐵 𝐺 𝑧 ) )  =  ( 𝐴 𝑆 ( 𝐵 𝐺 𝑧 ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦 𝑆 𝐵 )  =  ( 𝐴 𝑆 𝐵 ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦 𝑆 𝑧 )  =  ( 𝐴 𝑆 𝑧 ) ) | 
						
							| 19 | 17 18 | oveq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦 𝑆 𝐵 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝑧 ) ) ) | 
						
							| 20 | 16 19 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦 𝑆 ( 𝐵 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝐵 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ↔  ( 𝐴 𝑆 ( 𝐵 𝐺 𝑧 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝑧 ) ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐵 𝐺 𝑧 )  =  ( 𝐵 𝐺 𝐶 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴 𝑆 ( 𝐵 𝐺 𝑧 ) )  =  ( 𝐴 𝑆 ( 𝐵 𝐺 𝐶 ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴 𝑆 𝑧 )  =  ( 𝐴 𝑆 𝐶 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝑧 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝐶 ) ) ) | 
						
							| 25 | 22 24 | eqeq12d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴 𝑆 ( 𝐵 𝐺 𝑧 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝑧 ) )  ↔  ( 𝐴 𝑆 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝐶 ) ) ) ) | 
						
							| 26 | 15 20 25 | rspc3v | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  ℂ  ∧  𝐶  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ℂ ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  →  ( 𝐴 𝑆 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝐶 ) ) ) ) | 
						
							| 27 | 10 26 | syl5 | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  ℂ  ∧  𝐶  ∈  𝑋 )  →  ( 𝑊  ∈  CVecOLD  →  ( 𝐴 𝑆 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝐶 ) ) ) ) | 
						
							| 28 | 27 | 3com12 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝑊  ∈  CVecOLD  →  ( 𝐴 𝑆 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝐶 ) ) ) ) | 
						
							| 29 | 28 | impcom | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝑆 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐴 𝑆 𝐵 ) 𝐺 ( 𝐴 𝑆 𝐶 ) ) ) |