Metamath Proof Explorer


Theorem vcex

Description: The components of a complex vector space are sets. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Assertion vcex ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐺 CVecOLD 𝑆 ↔ ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD )
2 vcrel Rel CVecOLD
3 2 brrelex12i ( 𝐺 CVecOLD 𝑆 → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) )
4 1 3 sylbir ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) )