| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vciOLD.1 |
⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
| 2 |
|
vciOLD.2 |
⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
| 3 |
|
vciOLD.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
1
|
eqeq2i |
⊢ ( 𝑔 = 𝐺 ↔ 𝑔 = ( 1st ‘ 𝑊 ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp ) ) |
| 6 |
|
rneq |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) |
| 7 |
6 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
| 8 |
|
xpeq2 |
⊢ ( ran 𝑔 = 𝑋 → ( ℂ × ran 𝑔 ) = ( ℂ × 𝑋 ) ) |
| 9 |
8
|
feq2d |
⊢ ( ran 𝑔 = 𝑋 → ( 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ↔ 𝑠 : ( ℂ × 𝑋 ) ⟶ ran 𝑔 ) ) |
| 10 |
|
feq3 |
⊢ ( ran 𝑔 = 𝑋 → ( 𝑠 : ( ℂ × 𝑋 ) ⟶ ran 𝑔 ↔ 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) ) |
| 11 |
9 10
|
bitrd |
⊢ ( ran 𝑔 = 𝑋 → ( 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ↔ 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) ) |
| 12 |
7 11
|
syl |
⊢ ( 𝑔 = 𝐺 → ( 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ↔ 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) ) |
| 13 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑧 ) = ( 𝑥 𝐺 𝑧 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) ) |
| 15 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ) |
| 16 |
14 15
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ↔ ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ) ) |
| 17 |
7 16
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ) ) |
| 18 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ↔ ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ) ) |
| 20 |
19
|
anbi1d |
⊢ ( 𝑔 = 𝐺 → ( ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ↔ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ↔ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) |
| 22 |
17 21
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ↔ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ↔ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) |
| 24 |
23
|
anbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ↔ ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ) |
| 25 |
7 24
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ) |
| 26 |
5 12 25
|
3anbi123d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ↔ ( 𝐺 ∈ AbelOp ∧ 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ) ) |
| 27 |
4 26
|
sylbir |
⊢ ( 𝑔 = ( 1st ‘ 𝑊 ) → ( ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ↔ ( 𝐺 ∈ AbelOp ∧ 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ) ) |
| 28 |
2
|
eqeq2i |
⊢ ( 𝑠 = 𝑆 ↔ 𝑠 = ( 2nd ‘ 𝑊 ) ) |
| 29 |
|
feq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ↔ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) ) |
| 30 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( 1 𝑠 𝑥 ) = ( 1 𝑆 𝑥 ) ) |
| 31 |
30
|
eqeq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 1 𝑠 𝑥 ) = 𝑥 ↔ ( 1 𝑆 𝑥 ) = 𝑥 ) ) |
| 32 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) ) |
| 33 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 𝑥 ) = ( 𝑦 𝑆 𝑥 ) ) |
| 34 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 𝑧 ) = ( 𝑦 𝑆 𝑧 ) ) |
| 35 |
33 34
|
oveq12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) |
| 36 |
32 35
|
eqeq12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ↔ ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) ) |
| 37 |
36
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) ) |
| 38 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) ) |
| 39 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( 𝑧 𝑠 𝑥 ) = ( 𝑧 𝑆 𝑥 ) ) |
| 40 |
33 39
|
oveq12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ) |
| 41 |
38 40
|
eqeq12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ↔ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ) ) |
| 42 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) ) |
| 43 |
39
|
oveq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) = ( 𝑦 𝑠 ( 𝑧 𝑆 𝑥 ) ) ) |
| 44 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 ( 𝑧 𝑆 𝑥 ) ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 45 |
43 44
|
eqtrd |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
| 46 |
42 45
|
eqeq12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ↔ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) |
| 47 |
41 46
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ↔ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) |
| 48 |
47
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ↔ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) |
| 49 |
37 48
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ↔ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) |
| 50 |
49
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ↔ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) |
| 51 |
31 50
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ↔ ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
| 52 |
51
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
| 53 |
29 52
|
3anbi23d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐺 ∈ AbelOp ∧ 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) |
| 54 |
28 53
|
sylbir |
⊢ ( 𝑠 = ( 2nd ‘ 𝑊 ) → ( ( 𝐺 ∈ AbelOp ∧ 𝑠 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) |
| 55 |
27 54
|
elopabi |
⊢ ( 𝑊 ∈ { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) } → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
| 56 |
|
df-vc |
⊢ CVecOLD = { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) } |
| 57 |
55 56
|
eleq2s |
⊢ ( 𝑊 ∈ CVecOLD → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |