Step |
Hyp |
Ref |
Expression |
1 |
|
vciOLD.1 |
⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
2 |
|
vciOLD.2 |
⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
3 |
|
vciOLD.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
1 2 3
|
vciOLD |
⊢ ( 𝑊 ∈ CVecOLD → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
5 |
|
simpl |
⊢ ( ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ( 1 𝑆 𝑥 ) = 𝑥 ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 1 𝑆 𝑥 ) = 𝑥 ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 1 𝑆 𝑥 ) = 𝑥 ) |
8 |
4 7
|
syl |
⊢ ( 𝑊 ∈ CVecOLD → ∀ 𝑥 ∈ 𝑋 ( 1 𝑆 𝑥 ) = 𝑥 ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 1 𝑆 𝑥 ) = ( 1 𝑆 𝐴 ) ) |
10 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 1 𝑆 𝑥 ) = 𝑥 ↔ ( 1 𝑆 𝐴 ) = 𝐴 ) ) |
12 |
11
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 1 𝑆 𝑥 ) = 𝑥 ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
13 |
8 12
|
sylan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |