| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vcm.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑊 ) | 
						
							| 2 |  | vcm.2 | ⊢ 𝑆  =  ( 2nd  ‘ 𝑊 ) | 
						
							| 3 |  | vcm.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | vcm.4 | ⊢ 𝑀  =  ( inv ‘ 𝐺 ) | 
						
							| 5 | 1 | vcgrp | ⊢ ( 𝑊  ∈  CVecOLD  →  𝐺  ∈  GrpOp ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  𝐺  ∈  GrpOp ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 | 1 2 3 | vccl | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  - 1  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( - 1 𝑆 𝐴 )  ∈  𝑋 ) | 
						
							| 9 | 7 8 | mp3an2 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( - 1 𝑆 𝐴 )  ∈  𝑋 ) | 
						
							| 10 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 11 | 3 10 | grporid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( - 1 𝑆 𝐴 )  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) )  =  ( - 1 𝑆 𝐴 ) ) | 
						
							| 12 | 6 9 11 | syl2anc | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) )  =  ( - 1 𝑆 𝐴 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 14 | 3 4 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 15 | 5 14 | sylan | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 𝑀 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 16 | 3 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( ( - 1 𝑆 𝐴 )  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝑀 ‘ 𝐴 )  ∈  𝑋 ) )  →  ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 17 | 6 9 13 15 16 | syl13anc | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 18 | 1 2 3 | vcidOLD | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 1 𝑆 𝐴 )  =  𝐴 ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) ) | 
						
							| 20 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 21 |  | 1pneg1e0 | ⊢ ( 1  +  - 1 )  =  0 | 
						
							| 22 | 20 7 21 | addcomli | ⊢ ( - 1  +  1 )  =  0 | 
						
							| 23 | 22 | oveq1i | ⊢ ( ( - 1  +  1 ) 𝑆 𝐴 )  =  ( 0 𝑆 𝐴 ) | 
						
							| 24 | 1 2 3 | vcdir | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( - 1  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( - 1  +  1 ) 𝑆 𝐴 )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) | 
						
							| 25 | 7 24 | mp3anr1 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 1  ∈  ℂ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( - 1  +  1 ) 𝑆 𝐴 )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) | 
						
							| 26 | 20 25 | mpanr1 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1  +  1 ) 𝑆 𝐴 )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) | 
						
							| 27 | 1 2 3 10 | vc0 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 0 𝑆 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 28 | 23 26 27 | 3eqtr3a | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 29 | 19 28 | eqtr3d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 31 | 17 30 | eqtr3d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) )  =  ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 32 | 3 10 4 | grporinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 33 | 5 32 | sylan | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 35 | 31 34 | eqtr3d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 36 | 3 10 | grpolid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑀 ‘ 𝐴 )  ∈  𝑋 )  →  ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 37 | 6 15 36 | syl2anc | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 38 | 35 37 | eqtr3d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 39 | 12 38 | eqtr3d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( - 1 𝑆 𝐴 )  =  ( 𝑀 ‘ 𝐴 ) ) |