Step |
Hyp |
Ref |
Expression |
1 |
|
vcm.1 |
⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
2 |
|
vcm.2 |
⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
3 |
|
vcm.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
vcm.4 |
⊢ 𝑀 = ( inv ‘ 𝐺 ) |
5 |
1
|
vcgrp |
⊢ ( 𝑊 ∈ CVecOLD → 𝐺 ∈ GrpOp ) |
6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
8 |
1 2 3
|
vccl |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
9 |
7 8
|
mp3an2 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
10 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
11 |
3 10
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) ) |
12 |
6 9 11
|
syl2anc |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) ) |
13 |
|
simpr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
14 |
3 4
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
15 |
5 14
|
sylan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
16 |
3
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) |
17 |
6 9 13 15 16
|
syl13anc |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) |
18 |
1 2 3
|
vcidOLD |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
19 |
18
|
oveq2d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) ) |
20 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
21 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
22 |
20 7 21
|
addcomli |
⊢ ( - 1 + 1 ) = 0 |
23 |
22
|
oveq1i |
⊢ ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( 0 𝑆 𝐴 ) |
24 |
1 2 3
|
vcdir |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( - 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
25 |
7 24
|
mp3anr1 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
26 |
20 25
|
mpanr1 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
27 |
1 2 3 10
|
vc0 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = ( GId ‘ 𝐺 ) ) |
28 |
23 26 27
|
3eqtr3a |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
29 |
19 28
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) |
31 |
17 30
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) |
32 |
3 10 4
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
33 |
5 32
|
sylan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
34 |
33
|
oveq2d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) |
35 |
31 34
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) |
36 |
3 10
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
37 |
6 15 36
|
syl2anc |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
38 |
35 37
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
39 |
12 38
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ) |