Description: The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vcrel | ⊢ Rel CVecOLD | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-vc | ⊢ CVecOLD = { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) } | |
| 2 | 1 | relopabiv | ⊢ Rel CVecOLD |