Metamath Proof Explorer


Theorem vcsm

Description: Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vciOLD.1 𝐺 = ( 1st𝑊 )
vciOLD.2 𝑆 = ( 2nd𝑊 )
vciOLD.3 𝑋 = ran 𝐺
Assertion vcsm ( 𝑊 ∈ CVecOLD𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 )

Proof

Step Hyp Ref Expression
1 vciOLD.1 𝐺 = ( 1st𝑊 )
2 vciOLD.2 𝑆 = ( 2nd𝑊 )
3 vciOLD.3 𝑋 = ran 𝐺
4 1 2 3 vciOLD ( 𝑊 ∈ CVecOLD → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) )
5 4 simp2d ( 𝑊 ∈ CVecOLD𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 )