| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vc0.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑊 ) | 
						
							| 2 |  | vc0.2 | ⊢ 𝑆  =  ( 2nd  ‘ 𝑊 ) | 
						
							| 3 |  | vc0.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | vc0.4 | ⊢ 𝑍  =  ( GId ‘ 𝐺 ) | 
						
							| 5 | 1 3 4 | vczcl | ⊢ ( 𝑊  ∈  CVecOLD  →  𝑍  ∈  𝑋 ) | 
						
							| 6 | 5 | anim2i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑊  ∈  CVecOLD )  →  ( 𝐴  ∈  ℂ  ∧  𝑍  ∈  𝑋 ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  ℂ )  →  ( 𝐴  ∈  ℂ  ∧  𝑍  ∈  𝑋 ) ) | 
						
							| 8 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 9 | 1 2 3 | vcass | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 𝐴  ∈  ℂ  ∧  0  ∈  ℂ  ∧  𝑍  ∈  𝑋 ) )  →  ( ( 𝐴  ·  0 ) 𝑆 𝑍 )  =  ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) | 
						
							| 10 | 8 9 | mp3anr2 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 𝐴  ∈  ℂ  ∧  𝑍  ∈  𝑋 ) )  →  ( ( 𝐴  ·  0 ) 𝑆 𝑍 )  =  ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) | 
						
							| 11 | 7 10 | syldan | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐴  ·  0 ) 𝑆 𝑍 )  =  ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) | 
						
							| 12 |  | mul01 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐴  ·  0 ) 𝑆 𝑍 )  =  ( 0 𝑆 𝑍 ) ) | 
						
							| 14 | 1 2 3 4 | vc0 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝑍  ∈  𝑋 )  →  ( 0 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 15 | 5 14 | mpdan | ⊢ ( 𝑊  ∈  CVecOLD  →  ( 0 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 16 | 13 15 | sylan9eqr | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐴  ·  0 ) 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 17 | 15 | oveq2d | ⊢ ( 𝑊  ∈  CVecOLD  →  ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) )  =  ( 𝐴 𝑆 𝑍 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) )  =  ( 𝐴 𝑆 𝑍 ) ) | 
						
							| 19 | 11 16 18 | 3eqtr3rd | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝑆 𝑍 )  =  𝑍 ) |