Metamath Proof Explorer


Theorem vdegp1ai

Description: The induction step for a vertex degree calculation. If the degree of U in the edge set E is P , then adding { X , Y } to the edge set, where X =/= U =/= Y , yields degree P as well. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)

Ref Expression
Hypotheses vdegp1ai.vg 𝑉 = ( Vtx ‘ 𝐺 )
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = ( iEdg ‘ 𝐺 )
vdegp1ai.w 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
vdegp1ai.d ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃
vdegp1ai.vf ( Vtx ‘ 𝐹 ) = 𝑉
vdegp1ai.x 𝑋𝑉
vdegp1ai.xu 𝑋𝑈
vdegp1ai.y 𝑌𝑉
vdegp1ai.yu 𝑌𝑈
vdegp1ai.f ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ ⟨“ { 𝑋 , 𝑌 } ”⟩ )
Assertion vdegp1ai ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = 𝑃

Proof

Step Hyp Ref Expression
1 vdegp1ai.vg 𝑉 = ( Vtx ‘ 𝐺 )
2 vdegp1ai.u 𝑈𝑉
3 vdegp1ai.i 𝐼 = ( iEdg ‘ 𝐺 )
4 vdegp1ai.w 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
5 vdegp1ai.d ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 𝑃
6 vdegp1ai.vf ( Vtx ‘ 𝐹 ) = 𝑉
7 vdegp1ai.x 𝑋𝑉
8 vdegp1ai.xu 𝑋𝑈
9 vdegp1ai.y 𝑌𝑉
10 vdegp1ai.yu 𝑌𝑈
11 vdegp1ai.f ( iEdg ‘ 𝐹 ) = ( 𝐼 ++ ⟨“ { 𝑋 , 𝑌 } ”⟩ )
12 prex { 𝑋 , 𝑌 } ∈ V
13 wrdf ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
14 13 ffund ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → Fun 𝐼 )
15 4 14 mp1i ( { 𝑋 , 𝑌 } ∈ V → Fun 𝐼 )
16 6 a1i ( { 𝑋 , 𝑌 } ∈ V → ( Vtx ‘ 𝐹 ) = 𝑉 )
17 wrdv ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐼 ∈ Word V )
18 4 17 ax-mp 𝐼 ∈ Word V
19 cats1un ( ( 𝐼 ∈ Word V ∧ { 𝑋 , 𝑌 } ∈ V ) → ( 𝐼 ++ ⟨“ { 𝑋 , 𝑌 } ”⟩ ) = ( 𝐼 ∪ { ⟨ ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } ⟩ } ) )
20 18 19 mpan ( { 𝑋 , 𝑌 } ∈ V → ( 𝐼 ++ ⟨“ { 𝑋 , 𝑌 } ”⟩ ) = ( 𝐼 ∪ { ⟨ ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } ⟩ } ) )
21 11 20 syl5eq ( { 𝑋 , 𝑌 } ∈ V → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { ⟨ ( ♯ ‘ 𝐼 ) , { 𝑋 , 𝑌 } ⟩ } ) )
22 fvexd ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∈ V )
23 wrdlndm ( 𝐼 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 )
24 4 23 mp1i ( { 𝑋 , 𝑌 } ∈ V → ( ♯ ‘ 𝐼 ) ∉ dom 𝐼 )
25 2 a1i ( { 𝑋 , 𝑌 } ∈ V → 𝑈𝑉 )
26 id ( { 𝑋 , 𝑌 } ∈ V → { 𝑋 , 𝑌 } ∈ V )
27 8 necomi 𝑈𝑋
28 10 necomi 𝑈𝑌
29 27 28 prneli 𝑈 ∉ { 𝑋 , 𝑌 }
30 29 a1i ( { 𝑋 , 𝑌 } ∈ V → 𝑈 ∉ { 𝑋 , 𝑌 } )
31 1 3 15 16 21 22 24 25 26 30 p1evtxdeq ( { 𝑋 , 𝑌 } ∈ V → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) )
32 12 31 ax-mp ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )
33 32 5 eqtri ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = 𝑃