Step |
Hyp |
Ref |
Expression |
1 |
|
vdn1frgrv2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
vdgn0frgrv2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) ) |
3 |
2
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) |
4 |
1
|
vdgn1frgrv2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 1 ) ) |
5 |
4
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 1 ) |
6 |
1
|
vtxdgelxnn0 |
⊢ ( 𝑁 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ∈ ℕ0* ) |
7 |
|
xnn0n0n1ge2b |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ∈ ℕ0* → ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 1 ) ↔ 2 ≤ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑁 ∈ 𝑉 → ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 1 ) ↔ 2 ≤ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 1 ) ↔ 2 ≤ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
10 |
3 5 9
|
mpbi2and |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → 2 ≤ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) |
11 |
10
|
ex |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → 2 ≤ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |