| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdn1frgrv2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrconngr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  ConnGraph ) | 
						
							| 3 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 4 |  | usgrumgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  UMGraph ) | 
						
							| 6 | 1 | vdn0conngrumgrv2 | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0 ) | 
						
							| 7 | 6 | ex | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  →  ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 8 | 2 5 7 | syl2anc | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 9 | 8 | expdimp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0 ) ) |