Step |
Hyp |
Ref |
Expression |
1 |
|
vdn1frgrv2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrconngr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph ) |
3 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
4 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph ) |
6 |
1
|
vdn0conngrumgrv2 |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) |
7 |
6
|
ex |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) ) |
8 |
2 5 7
|
syl2anc |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) ) |
9 |
8
|
expdimp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) ) |