| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdn1frgrv2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 3 | 2 | anim1i | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  →  ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 ) ) | 
						
							| 5 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 7 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 8 | 1 5 6 7 | vtxdusgrval | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 9 | 4 8 | syl | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 10 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 11 | 1 10 | 3cyclfrgrrn2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 12 | 11 | adantlr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 13 |  | preq1 | ⊢ ( 𝑎  =  𝑁  →  { 𝑎 ,  𝑏 }  =  { 𝑁 ,  𝑏 } ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑎  =  𝑁  →  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ↔  { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 15 |  | preq2 | ⊢ ( 𝑎  =  𝑁  →  { 𝑐 ,  𝑎 }  =  { 𝑐 ,  𝑁 } ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑎  =  𝑁  →  ( { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 )  ↔  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 17 | 14 16 | 3anbi13d | ⊢ ( 𝑎  =  𝑁  →  ( ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( 𝑎  =  𝑁  →  ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  ↔  ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 19 | 18 | 2rexbidv | ⊢ ( 𝑎  =  𝑁  →  ( ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 20 | 19 | rspcva | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) ) )  →  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 21 | 2 | adantl | ⊢ ( ( ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑁  ∈  𝑉 )  ∧  𝐺  ∈   FriendGraph  )  →  𝐺  ∈  USGraph ) | 
						
							| 22 |  | simplll | ⊢ ( ( ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑁  ∈  𝑉 )  ∧  𝐺  ∈   FriendGraph  )  →  𝑏  ≠  𝑐 ) | 
						
							| 23 |  | 3simpb | ⊢ ( ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) )  →  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 24 | 23 | ad3antlr | ⊢ ( ( ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑁  ∈  𝑉 )  ∧  𝐺  ∈   FriendGraph  )  →  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 25 | 5 10 | usgr2edg1 | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑏  ≠  𝑐 )  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 26 | 21 22 24 25 | syl21anc | ⊢ ( ( ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑁  ∈  𝑉 )  ∧  𝐺  ∈   FriendGraph  )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 27 | 26 | a1d | ⊢ ( ( ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑁  ∈  𝑉 )  ∧  𝐺  ∈   FriendGraph  )  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑁  ∈  𝑉 )  →  ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 31 | 30 | rexlimivv | ⊢ ( ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑁 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑁 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 32 | 20 31 | syl | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) ) )  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝑁  ∈  𝑉  →  ( ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑁  ∈  𝑉  →  ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 34 | 33 | pm2.43a | ⊢ ( 𝑁  ∈  𝑉  →  ( ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 35 | 34 | com24 | ⊢ ( 𝑁  ∈  𝑉  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 36 | 35 | com3r | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑁  ∈  𝑉  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ( ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 37 | 36 | imp31 | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ∀ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑏  ≠  𝑐  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑐 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑐 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 38 | 12 37 | mpd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 39 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 40 | 39 | dmex | ⊢ dom  ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 41 | 40 | a1i | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  dom  ( iEdg ‘ 𝐺 )  ∈  V ) | 
						
							| 42 |  | rabexg | ⊢ ( dom  ( iEdg ‘ 𝐺 )  ∈  V  →  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V ) | 
						
							| 43 |  | hash1snb | ⊢ ( { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  1  ↔  ∃ 𝑖 { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  { 𝑖 } ) ) | 
						
							| 44 | 41 42 43 | 3syl | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  1  ↔  ∃ 𝑖 { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  { 𝑖 } ) ) | 
						
							| 45 |  | reusn | ⊢ ( ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  ↔  ∃ 𝑖 { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  { 𝑖 } ) | 
						
							| 46 | 44 45 | bitr4di | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  1  ↔  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 47 | 46 | necon3abid | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ≠  1  ↔  ¬  ∃! 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 48 | 38 47 | mpbird | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ≠  1 ) | 
						
							| 49 | 9 48 | eqnetrd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  1 ) | 
						
							| 50 | 49 | ex | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑁  ∈  𝑉 )  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  1 ) ) |