Step |
Hyp |
Ref |
Expression |
1 |
|
vdn0conngrv2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
5 |
1 2 3 4
|
vtxdumgrval |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
6 |
5
|
ad2ant2lr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
7 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
8 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
9 |
|
funfn |
⊢ ( Fun ( iEdg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
10 |
9
|
biimpi |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
11 |
7 8 10
|
3syl |
⊢ ( 𝐺 ∈ UMGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
14 |
|
simpl |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → 𝐺 ∈ ConnGraph ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → 𝐺 ∈ ConnGraph ) |
16 |
|
simpl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → 𝑁 ∈ 𝑉 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → 𝑁 ∈ 𝑉 ) |
18 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → 1 < ( ♯ ‘ 𝑉 ) ) |
19 |
1 2
|
conngrv2edg |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 ) |
20 |
15 17 18 19
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 ) |
21 |
|
eleq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
22 |
21
|
rexrn |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
23 |
22
|
biimpd |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
24 |
13 20 23
|
sylc |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
25 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
26 |
24 25
|
sylib |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ¬ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
27 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
28 |
27
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
29 |
28
|
a1i |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → dom ( iEdg ‘ 𝐺 ) ∈ V ) |
30 |
|
rabexg |
⊢ ( dom ( iEdg ‘ 𝐺 ) ∈ V → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V ) |
31 |
|
hasheq0 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ↔ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ) ) |
32 |
29 30 31
|
3syl |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ↔ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ) ) |
33 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
34 |
32 33
|
bitrdi |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ↔ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
35 |
34
|
necon3abid |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ≠ 0 ↔ ¬ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
36 |
26 35
|
mpbird |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ≠ 0 ) |
37 |
6 36
|
eqnetrd |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) |