| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdn0conngrv2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 5 | 1 2 3 4 | vtxdumgrval | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 6 | 5 | ad2ant2lr | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  =  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) | 
						
							| 7 |  | umgruhgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 8 | 2 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 9 |  | funfn | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  ↔  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 11 | 7 8 10 | 3syl | ⊢ ( 𝐺  ∈  UMGraph  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  →  𝐺  ∈  ConnGraph ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  𝐺  ∈  ConnGraph ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  𝑁  ∈  𝑉 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  𝑁  ∈  𝑉 ) | 
						
							| 18 |  | simprr | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  1  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 19 | 1 2 | conngrv2edg | ⊢ ( ( 𝐺  ∈  ConnGraph  ∧  𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∃ 𝑒  ∈  ran  ( iEdg ‘ 𝐺 ) 𝑁  ∈  𝑒 ) | 
						
							| 20 | 15 17 18 19 | syl3anc | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ∃ 𝑒  ∈  ran  ( iEdg ‘ 𝐺 ) 𝑁  ∈  𝑒 ) | 
						
							| 21 |  | eleq2 | ⊢ ( 𝑒  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ( 𝑁  ∈  𝑒  ↔  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 22 | 21 | rexrn | ⊢ ( ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 )  →  ( ∃ 𝑒  ∈  ran  ( iEdg ‘ 𝐺 ) 𝑁  ∈  𝑒  ↔  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 23 | 22 | biimpd | ⊢ ( ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 )  →  ( ∃ 𝑒  ∈  ran  ( iEdg ‘ 𝐺 ) 𝑁  ∈  𝑒  →  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 24 | 13 20 23 | sylc | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 25 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  ↔  ¬  ∀ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ¬  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 26 | 24 25 | sylib | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ¬  ∀ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ¬  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 27 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 28 | 27 | dmex | ⊢ dom  ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  dom  ( iEdg ‘ 𝐺 )  ∈  V ) | 
						
							| 30 |  | rabexg | ⊢ ( dom  ( iEdg ‘ 𝐺 )  ∈  V  →  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V ) | 
						
							| 31 |  | hasheq0 | ⊢ ( { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  0  ↔  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  ∅ ) ) | 
						
							| 32 | 29 30 31 | 3syl | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  0  ↔  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  ∅ ) ) | 
						
							| 33 |  | rabeq0 | ⊢ ( { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  ∅  ↔  ∀ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ¬  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 34 | 32 33 | bitrdi | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  0  ↔  ∀ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ¬  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 35 | 34 | necon3abid | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ≠  0  ↔  ¬  ∀ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ¬  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 36 | 26 35 | mpbird | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ≠  0 ) | 
						
							| 37 | 6 36 | eqnetrd | ⊢ ( ( ( 𝐺  ∈  ConnGraph  ∧  𝐺  ∈  UMGraph )  ∧  ( 𝑁  ∈  𝑉  ∧  1  <  ( ♯ ‘ 𝑉 ) ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 )  ≠  0 ) |