Step |
Hyp |
Ref |
Expression |
1 |
|
vdumgr0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐺 ∈ UHGraph ) |
4 |
|
simp3 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑉 ) = 1 ) |
5 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
6 |
1 5
|
umgrislfupgr |
⊢ ( 𝐺 ∈ UMGraph ↔ ( 𝐺 ∈ UPGraph ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐺 ∈ UMGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
9 |
3 4 8
|
3jca |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
10 |
|
simp2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝑁 ∈ 𝑉 ) |
11 |
|
eqid |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
12 |
1 5 11
|
vtxdlfuhgr1v |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( 𝑁 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 0 ) ) |
13 |
9 10 12
|
sylc |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 0 ) |