Metamath Proof Explorer


Theorem velcomp

Description: Characterization of setvar elements of the complement of a class. (Contributed by Andrew Salmon, 15-Jul-2011)

Ref Expression
Assertion velcomp ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ¬ 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 eldif ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥𝐴 ) )
3 1 2 mpbiran ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ¬ 𝑥𝐴 )