| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							phiprm | 
							⊢ ( 𝑃  ∈  ℙ  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqcomd | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  =  ( ϕ ‘ 𝑃 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝑃  −  1 )  =  ( ϕ ‘ 𝑃 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq2d | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴 ↑ ( 𝑃  −  1 ) )  =  ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq1d | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( ( 𝐴 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ )  | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  𝑃  ∈  ℕ )  | 
						
						
							| 8 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  𝐴  ∈  ℤ )  | 
						
						
							| 9 | 
							
								
							 | 
							prmz | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ )  | 
						
						
							| 10 | 
							
								9
							 | 
							anim1ci | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℤ ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3adant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℤ ) )  | 
						
						
							| 12 | 
							
								
							 | 
							gcdcom | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( 𝐴  gcd  𝑃 )  =  ( 𝑃  gcd  𝐴 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴  gcd  𝑃 )  =  ( 𝑃  gcd  𝐴 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							coprm | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  𝑃  ∥  𝐴  ↔  ( 𝑃  gcd  𝐴 )  =  1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							biimp3a | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝑃  gcd  𝐴 )  =  1 )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eqtrd | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴  gcd  𝑃 )  =  1 )  | 
						
						
							| 17 | 
							
								
							 | 
							eulerth | 
							⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  | 
						
						
							| 18 | 
							
								7 8 16 17
							 | 
							syl3anc | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  | 
						
						
							| 19 | 
							
								6
							 | 
							nnred | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ )  | 
						
						
							| 20 | 
							
								
							 | 
							prmgt1 | 
							⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							jca | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							1mod | 
							⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 1  mod  𝑃 )  =  1 )  | 
						
						
							| 25 | 
							
								5 18 24
							 | 
							3eqtrd | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( ( 𝐴 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1 )  |