Step |
Hyp |
Ref |
Expression |
1 |
|
vieta1.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
vieta1.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
|
vieta1.3 |
⊢ 𝑅 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
vieta1.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
5 |
|
vieta1.5 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) = 𝑁 ) |
6 |
|
vieta1lem.6 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
7 |
|
vieta1lem.7 |
⊢ ( 𝜑 → ( 𝐷 + 1 ) = 𝑁 ) |
8 |
|
vieta1lem.8 |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ) ) |
9 |
|
vieta1lem.9 |
⊢ 𝑄 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
10 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
12 |
10 11
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
13 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 0 } ) ⊆ dom 𝐹 |
14 |
3 13
|
eqsstri |
⊢ 𝑅 ⊆ dom 𝐹 |
15 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
17 |
14 16
|
fssdm |
⊢ ( 𝜑 → 𝑅 ⊆ ℂ ) |
18 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ ℂ ) |
19 |
|
eqid |
⊢ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = ( Xp ∘f − ( ℂ × { 𝑧 } ) ) |
20 |
19
|
plyremlem |
⊢ ( 𝑧 ∈ ℂ → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) ) |
21 |
18 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) ) |
22 |
21
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ) |
23 |
21
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ) |
24 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 1 ≠ 0 ) |
26 |
23 25
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ≠ 0 ) |
27 |
|
fveq2 |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( deg ‘ 0𝑝 ) ) |
28 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
29 |
27 28
|
eqtrdi |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 0 ) |
30 |
29
|
necon3i |
⊢ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ≠ 0 → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) |
31 |
26 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) |
32 |
|
quotcl2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ∈ ( Poly ‘ ℂ ) ) |
33 |
12 22 31 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ∈ ( Poly ‘ ℂ ) ) |
34 |
9 33
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 ∈ ( Poly ‘ ℂ ) ) |
35 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 1 ∈ ℂ ) |
36 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ∈ ℂ ) |
38 |
|
dgrcl |
⊢ ( 𝑄 ∈ ( Poly ‘ ℂ ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
39 |
34 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
40 |
39
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝑄 ) ∈ ℂ ) |
41 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
42 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
43 |
41 37 42
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
44 |
7 2
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐷 + 1 ) = ( deg ‘ 𝐹 ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 + 1 ) = ( deg ‘ 𝐹 ) ) |
46 |
3
|
eleq2i |
⊢ ( 𝑧 ∈ 𝑅 ↔ 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
47 |
16
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℂ ) |
48 |
|
fniniseg |
⊢ ( 𝐹 Fn ℂ → ( 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
50 |
46 49
|
syl5bb |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑅 ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
51 |
50
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑧 ) = 0 ) |
52 |
19
|
facth |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
53 |
11 18 51 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
54 |
9
|
oveq2i |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) |
55 |
53 54
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) |
56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝐹 ) = ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ) |
57 |
6
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐷 + 1 ) ∈ ℕ ) |
58 |
7 57
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
59 |
58
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
60 |
2 59
|
eqnetrrid |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ≠ 0 ) |
61 |
|
fveq2 |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = ( deg ‘ 0𝑝 ) ) |
62 |
61 28
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = 0 ) |
63 |
62
|
necon3i |
⊢ ( ( deg ‘ 𝐹 ) ≠ 0 → 𝐹 ≠ 0𝑝 ) |
64 |
60 63
|
syl |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 ≠ 0𝑝 ) |
66 |
55 65
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ≠ 0𝑝 ) |
67 |
|
plymul0or |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ∈ ( Poly ‘ ℂ ) ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = 0𝑝 ↔ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
68 |
22 34 67
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = 0𝑝 ↔ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
69 |
68
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ≠ 0𝑝 ↔ ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
70 |
66 69
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) |
71 |
|
neanior |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ∧ 𝑄 ≠ 0𝑝 ) ↔ ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) |
72 |
70 71
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ∧ 𝑄 ≠ 0𝑝 ) ) |
73 |
72
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 ≠ 0𝑝 ) |
74 |
|
eqid |
⊢ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
75 |
|
eqid |
⊢ ( deg ‘ 𝑄 ) = ( deg ‘ 𝑄 ) |
76 |
74 75
|
dgrmul |
⊢ ( ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) ∧ ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ≠ 0𝑝 ) ) → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
77 |
22 31 34 73 76
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
78 |
45 56 77
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 + 1 ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
79 |
23
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) = ( 1 + ( deg ‘ 𝑄 ) ) ) |
80 |
43 78 79
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 + 𝐷 ) = ( 1 + ( deg ‘ 𝑄 ) ) ) |
81 |
35 37 40 80
|
addcanad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 = ( deg ‘ 𝑄 ) ) |
82 |
34 81
|
jca |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝐷 = ( deg ‘ 𝑄 ) ) ) |