Step |
Hyp |
Ref |
Expression |
1 |
|
vieta1.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
vieta1.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
|
vieta1.3 |
⊢ 𝑅 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
vieta1.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
5 |
|
vieta1.5 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) = 𝑁 ) |
6 |
|
vieta1lem.6 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
7 |
|
vieta1lem.7 |
⊢ ( 𝜑 → ( 𝐷 + 1 ) = 𝑁 ) |
8 |
|
vieta1lem.8 |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ) ) |
9 |
|
vieta1lem.9 |
⊢ 𝑄 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
10 |
6
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐷 + 1 ) ∈ ℕ ) |
11 |
7 10
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
12 |
11
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
13 |
5 12
|
eqnetrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ≠ 0 ) |
14 |
2 12
|
eqnetrrid |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ≠ 0 ) |
15 |
|
fveq2 |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = ( deg ‘ 0𝑝 ) ) |
16 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
17 |
15 16
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = 0 ) |
18 |
17
|
necon3i |
⊢ ( ( deg ‘ 𝐹 ) ≠ 0 → 𝐹 ≠ 0𝑝 ) |
19 |
14 18
|
syl |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
20 |
3
|
fta1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐹 ≠ 0𝑝 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) |
21 |
4 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
23 |
|
hasheq0 |
⊢ ( 𝑅 ∈ Fin → ( ( ♯ ‘ 𝑅 ) = 0 ↔ 𝑅 = ∅ ) ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) = 0 ↔ 𝑅 = ∅ ) ) |
25 |
24
|
necon3bid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) ≠ 0 ↔ 𝑅 ≠ ∅ ) ) |
26 |
13 25
|
mpbid |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
27 |
|
n0 |
⊢ ( 𝑅 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑅 ) |
28 |
26 27
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 𝑧 ∈ 𝑅 ) |
29 |
|
incom |
⊢ ( { 𝑧 } ∩ ( ◡ 𝑄 “ { 0 } ) ) = ( ( ◡ 𝑄 “ { 0 } ) ∩ { 𝑧 } ) |
30 |
1 2 3 4 5 6 7 8 9
|
vieta1lem1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝐷 = ( deg ‘ 𝑄 ) ) ) |
31 |
30
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 = ( deg ‘ 𝑄 ) ) |
32 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 ∈ ( Poly ‘ ℂ ) ) |
33 |
|
dgrcl |
⊢ ( 𝑄 ∈ ( Poly ‘ ℂ ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
35 |
34
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝑄 ) ∈ ℝ ) |
36 |
31 35
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ∈ ℝ ) |
37 |
36
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 < ( 𝐷 + 1 ) ) |
38 |
36 37
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 + 1 ) ≠ 𝐷 ) |
39 |
|
snssi |
⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → { 𝑧 } ⊆ ( ◡ 𝑄 “ { 0 } ) ) |
40 |
|
ssequn1 |
⊢ ( { 𝑧 } ⊆ ( ◡ 𝑄 “ { 0 } ) ↔ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) = ( ◡ 𝑄 “ { 0 } ) ) |
41 |
39 40
|
sylib |
⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) = ( ◡ 𝑄 “ { 0 } ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) |
43 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
44 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 0 } ) ⊆ dom 𝐹 |
45 |
3 44
|
eqsstri |
⊢ 𝑅 ⊆ dom 𝐹 |
46 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
47 |
|
fdm |
⊢ ( 𝐹 : ℂ ⟶ ℂ → dom 𝐹 = ℂ ) |
48 |
4 46 47
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = ℂ ) |
49 |
45 48
|
sseqtrid |
⊢ ( 𝜑 → 𝑅 ⊆ ℂ ) |
50 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ ℂ ) |
51 |
3
|
eleq2i |
⊢ ( 𝑧 ∈ 𝑅 ↔ 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
52 |
|
ffn |
⊢ ( 𝐹 : ℂ ⟶ ℂ → 𝐹 Fn ℂ ) |
53 |
|
fniniseg |
⊢ ( 𝐹 Fn ℂ → ( 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
54 |
4 46 52 53
|
4syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
55 |
51 54
|
syl5bb |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑅 ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
56 |
55
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑧 ) = 0 ) |
57 |
|
eqid |
⊢ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = ( Xp ∘f − ( ℂ × { 𝑧 } ) ) |
58 |
57
|
facth |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
59 |
43 50 56 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
60 |
9
|
oveq2i |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) |
61 |
59 60
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) |
62 |
61
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ◡ 𝐹 = ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) |
63 |
62
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ 𝐹 “ { 0 } ) = ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) ) |
64 |
3 63
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 = ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) ) |
65 |
|
cnex |
⊢ ℂ ∈ V |
66 |
57
|
plyremlem |
⊢ ( 𝑧 ∈ ℂ → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) ) |
67 |
50 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) ) |
68 |
67
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ) |
69 |
|
plyf |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) : ℂ ⟶ ℂ ) |
70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) : ℂ ⟶ ℂ ) |
71 |
|
plyf |
⊢ ( 𝑄 ∈ ( Poly ‘ ℂ ) → 𝑄 : ℂ ⟶ ℂ ) |
72 |
32 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 : ℂ ⟶ ℂ ) |
73 |
|
ofmulrt |
⊢ ( ( ℂ ∈ V ∧ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) : ℂ ⟶ ℂ ∧ 𝑄 : ℂ ⟶ ℂ ) → ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) = ( ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
74 |
65 70 72 73
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) = ( ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
75 |
67
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) |
76 |
75
|
uneq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) ∪ ( ◡ 𝑄 “ { 0 } ) ) = ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
77 |
64 74 76
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 = ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
78 |
77
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ 𝑅 ) = ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
79 |
5 7
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) = ( 𝐷 + 1 ) ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ 𝑅 ) = ( 𝐷 + 1 ) ) |
81 |
78 80
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( 𝐷 + 1 ) ) |
82 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 ≠ 0𝑝 ) |
83 |
61 82
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ≠ 0𝑝 ) |
84 |
|
plymul0or |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ∈ ( Poly ‘ ℂ ) ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = 0𝑝 ↔ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
85 |
68 32 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = 0𝑝 ↔ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
86 |
85
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ≠ 0𝑝 ↔ ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
87 |
83 86
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) |
88 |
|
neanior |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ∧ 𝑄 ≠ 0𝑝 ) ↔ ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) |
89 |
87 88
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ∧ 𝑄 ≠ 0𝑝 ) ) |
90 |
89
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 ≠ 0𝑝 ) |
91 |
|
eqid |
⊢ ( ◡ 𝑄 “ { 0 } ) = ( ◡ 𝑄 “ { 0 } ) |
92 |
91
|
fta1 |
⊢ ( ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ≠ 0𝑝 ) → ( ( ◡ 𝑄 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ ( deg ‘ 𝑄 ) ) ) |
93 |
32 90 92
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ◡ 𝑄 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ ( deg ‘ 𝑄 ) ) ) |
94 |
93
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ ( deg ‘ 𝑄 ) ) |
95 |
94 31
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ 𝐷 ) |
96 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
97 |
93
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ 𝑄 “ { 0 } ) ∈ Fin ) |
98 |
|
hashun2 |
⊢ ( ( { 𝑧 } ∈ Fin ∧ ( ◡ 𝑄 “ { 0 } ) ∈ Fin ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) ≤ ( ( ♯ ‘ { 𝑧 } ) + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
99 |
96 97 98
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) ≤ ( ( ♯ ‘ { 𝑧 } ) + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
100 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
101 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ∈ ℂ ) |
103 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
104 |
100 102 103
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
105 |
81 104
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( 1 + 𝐷 ) ) |
106 |
|
hashsng |
⊢ ( 𝑧 ∈ 𝑅 → ( ♯ ‘ { 𝑧 } ) = 1 ) |
107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ { 𝑧 } ) = 1 ) |
108 |
107
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ♯ ‘ { 𝑧 } ) + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) = ( 1 + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
109 |
99 105 108
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 + 𝐷 ) ≤ ( 1 + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
110 |
|
hashcl |
⊢ ( ( ◡ 𝑄 “ { 0 } ) ∈ Fin → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ∈ ℕ0 ) |
111 |
97 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ∈ ℕ0 ) |
112 |
111
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ∈ ℝ ) |
113 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 1 ∈ ℝ ) |
114 |
36 112 113
|
leadd2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 ≤ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ↔ ( 1 + 𝐷 ) ≤ ( 1 + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) ) |
115 |
109 114
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ≤ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) |
116 |
112 36
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = 𝐷 ↔ ( ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ 𝐷 ∧ 𝐷 ≤ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) ) |
117 |
95 115 116
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = 𝐷 ) |
118 |
81 117
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ↔ ( 𝐷 + 1 ) = 𝐷 ) ) |
119 |
42 118
|
syl5ib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → ( 𝐷 + 1 ) = 𝐷 ) ) |
120 |
119
|
necon3ad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝐷 + 1 ) ≠ 𝐷 → ¬ 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) ) ) |
121 |
38 120
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ¬ 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) ) |
122 |
|
disjsn |
⊢ ( ( ( ◡ 𝑄 “ { 0 } ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) ) |
123 |
121 122
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ◡ 𝑄 “ { 0 } ) ∩ { 𝑧 } ) = ∅ ) |
124 |
29 123
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( { 𝑧 } ∩ ( ◡ 𝑄 “ { 0 } ) ) = ∅ ) |
125 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 ∈ Fin ) |
126 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 ⊆ ℂ ) |
127 |
126
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ℂ ) |
128 |
124 77 125 127
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ 𝑅 𝑥 = ( Σ 𝑥 ∈ { 𝑧 } 𝑥 + Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 ) ) |
129 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
130 |
129
|
sumsn |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → Σ 𝑥 ∈ { 𝑧 } 𝑥 = 𝑧 ) |
131 |
50 50 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ { 𝑧 } 𝑥 = 𝑧 ) |
132 |
50
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - - 𝑧 = 𝑧 ) |
133 |
131 132
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ { 𝑧 } 𝑥 = - - 𝑧 ) |
134 |
117 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) |
135 |
|
fveq2 |
⊢ ( 𝑓 = 𝑄 → ( deg ‘ 𝑓 ) = ( deg ‘ 𝑄 ) ) |
136 |
135
|
eqeq2d |
⊢ ( 𝑓 = 𝑄 → ( 𝐷 = ( deg ‘ 𝑓 ) ↔ 𝐷 = ( deg ‘ 𝑄 ) ) ) |
137 |
|
cnveq |
⊢ ( 𝑓 = 𝑄 → ◡ 𝑓 = ◡ 𝑄 ) |
138 |
137
|
imaeq1d |
⊢ ( 𝑓 = 𝑄 → ( ◡ 𝑓 “ { 0 } ) = ( ◡ 𝑄 “ { 0 } ) ) |
139 |
138
|
fveq2d |
⊢ ( 𝑓 = 𝑄 → ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) |
140 |
139 135
|
eqeq12d |
⊢ ( 𝑓 = 𝑄 → ( ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ↔ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) ) |
141 |
136 140
|
anbi12d |
⊢ ( 𝑓 = 𝑄 → ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) ↔ ( 𝐷 = ( deg ‘ 𝑄 ) ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) ) ) |
142 |
138
|
sumeq1d |
⊢ ( 𝑓 = 𝑄 → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 ) |
143 |
|
fveq2 |
⊢ ( 𝑓 = 𝑄 → ( coeff ‘ 𝑓 ) = ( coeff ‘ 𝑄 ) ) |
144 |
135
|
oveq1d |
⊢ ( 𝑓 = 𝑄 → ( ( deg ‘ 𝑓 ) − 1 ) = ( ( deg ‘ 𝑄 ) − 1 ) ) |
145 |
143 144
|
fveq12d |
⊢ ( 𝑓 = 𝑄 → ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) ) |
146 |
143 135
|
fveq12d |
⊢ ( 𝑓 = 𝑄 → ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
147 |
145 146
|
oveq12d |
⊢ ( 𝑓 = 𝑄 → ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) = ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
148 |
147
|
negeqd |
⊢ ( 𝑓 = 𝑄 → - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
149 |
142 148
|
eqeq12d |
⊢ ( 𝑓 = 𝑄 → ( Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ↔ Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) ) |
150 |
141 149
|
imbi12d |
⊢ ( 𝑓 = 𝑄 → ( ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ) ↔ ( ( 𝐷 = ( deg ‘ 𝑄 ) ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) ) ) |
151 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ) ) |
152 |
150 151 32
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝐷 = ( deg ‘ 𝑄 ) ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) ) |
153 |
31 134 152
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
154 |
31
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) ) |
155 |
61
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ 𝐹 ) = ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ) |
156 |
1 155
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐴 = ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ) |
157 |
61
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝐹 ) = ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ) |
158 |
67
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ) |
159 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
160 |
159
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 1 ≠ 0 ) |
161 |
158 160
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ≠ 0 ) |
162 |
|
fveq2 |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( deg ‘ 0𝑝 ) ) |
163 |
162 16
|
eqtrdi |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 0 ) |
164 |
163
|
necon3i |
⊢ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ≠ 0 → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) |
165 |
161 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) |
166 |
|
eqid |
⊢ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
167 |
|
eqid |
⊢ ( deg ‘ 𝑄 ) = ( deg ‘ 𝑄 ) |
168 |
166 167
|
dgrmul |
⊢ ( ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) ∧ ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ≠ 0𝑝 ) ) → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
169 |
68 165 32 90 168
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
170 |
157 169
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝐹 ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
171 |
2 170
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑁 = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
172 |
156 171
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) = ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) ) |
173 |
|
eqid |
⊢ ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
174 |
|
eqid |
⊢ ( coeff ‘ 𝑄 ) = ( coeff ‘ 𝑄 ) |
175 |
173 174 166 167
|
coemulhi |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ∈ ( Poly ‘ ℂ ) ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
176 |
68 32 175
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
177 |
158
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) = ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) ) |
178 |
|
ssid |
⊢ ℂ ⊆ ℂ |
179 |
|
plyid |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → Xp ∈ ( Poly ‘ ℂ ) ) |
180 |
178 100 179
|
mp2an |
⊢ Xp ∈ ( Poly ‘ ℂ ) |
181 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝑧 ∈ ℂ ) → ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ) |
182 |
178 50 181
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ) |
183 |
|
eqid |
⊢ ( coeff ‘ Xp ) = ( coeff ‘ Xp ) |
184 |
|
eqid |
⊢ ( coeff ‘ ( ℂ × { 𝑧 } ) ) = ( coeff ‘ ( ℂ × { 𝑧 } ) ) |
185 |
183 184
|
coesub |
⊢ ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ) |
186 |
180 182 185
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ) |
187 |
186
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) ) |
188 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
189 |
183
|
coef3 |
⊢ ( Xp ∈ ( Poly ‘ ℂ ) → ( coeff ‘ Xp ) : ℕ0 ⟶ ℂ ) |
190 |
|
ffn |
⊢ ( ( coeff ‘ Xp ) : ℕ0 ⟶ ℂ → ( coeff ‘ Xp ) Fn ℕ0 ) |
191 |
180 189 190
|
mp2b |
⊢ ( coeff ‘ Xp ) Fn ℕ0 |
192 |
191
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ Xp ) Fn ℕ0 ) |
193 |
184
|
coef3 |
⊢ ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) → ( coeff ‘ ( ℂ × { 𝑧 } ) ) : ℕ0 ⟶ ℂ ) |
194 |
|
ffn |
⊢ ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) : ℕ0 ⟶ ℂ → ( coeff ‘ ( ℂ × { 𝑧 } ) ) Fn ℕ0 ) |
195 |
182 193 194
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ ( ℂ × { 𝑧 } ) ) Fn ℕ0 ) |
196 |
|
nn0ex |
⊢ ℕ0 ∈ V |
197 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ℕ0 ∈ V ) |
198 |
|
inidm |
⊢ ( ℕ0 ∩ ℕ0 ) = ℕ0 |
199 |
|
coeidp |
⊢ ( 1 ∈ ℕ0 → ( ( coeff ‘ Xp ) ‘ 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
200 |
199
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( coeff ‘ Xp ) ‘ 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
201 |
|
eqid |
⊢ 1 = 1 |
202 |
201
|
iftruei |
⊢ if ( 1 = 1 , 1 , 0 ) = 1 |
203 |
200 202
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( coeff ‘ Xp ) ‘ 1 ) = 1 ) |
204 |
|
0lt1 |
⊢ 0 < 1 |
205 |
|
0re |
⊢ 0 ∈ ℝ |
206 |
|
1re |
⊢ 1 ∈ ℝ |
207 |
205 206
|
ltnlei |
⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
208 |
204 207
|
mpbi |
⊢ ¬ 1 ≤ 0 |
209 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → 𝑧 ∈ ℂ ) |
210 |
|
0dgr |
⊢ ( 𝑧 ∈ ℂ → ( deg ‘ ( ℂ × { 𝑧 } ) ) = 0 ) |
211 |
209 210
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( deg ‘ ( ℂ × { 𝑧 } ) ) = 0 ) |
212 |
211
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ↔ 1 ≤ 0 ) ) |
213 |
208 212
|
mtbiri |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ¬ 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) |
214 |
|
eqid |
⊢ ( deg ‘ ( ℂ × { 𝑧 } ) ) = ( deg ‘ ( ℂ × { 𝑧 } ) ) |
215 |
184 214
|
dgrub |
⊢ ( ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ∧ 1 ∈ ℕ0 ∧ ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) ≠ 0 ) → 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) |
216 |
215
|
3expia |
⊢ ( ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ∧ 1 ∈ ℕ0 ) → ( ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) ≠ 0 → 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) ) |
217 |
182 216
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) ≠ 0 → 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) ) |
218 |
217
|
necon1bd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ¬ 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) = 0 ) ) |
219 |
213 218
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) = 0 ) |
220 |
192 195 197 197 198 203 219
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = ( 1 − 0 ) ) |
221 |
188 220
|
mpan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = ( 1 − 0 ) ) |
222 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
223 |
221 222
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = 1 ) |
224 |
187 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = 1 ) |
225 |
177 224
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) = 1 ) |
226 |
225
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) = ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
227 |
174
|
coef3 |
⊢ ( 𝑄 ∈ ( Poly ‘ ℂ ) → ( coeff ‘ 𝑄 ) : ℕ0 ⟶ ℂ ) |
228 |
32 227
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ 𝑄 ) : ℕ0 ⟶ ℂ ) |
229 |
228 34
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ∈ ℂ ) |
230 |
229
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
231 |
226 230
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
232 |
172 176 231
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
233 |
154 232
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) = ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
234 |
233
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
235 |
153 234
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
236 |
133 235
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Σ 𝑥 ∈ { 𝑧 } 𝑥 + Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 ) = ( - - 𝑧 + - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
237 |
50
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - 𝑧 ∈ ℂ ) |
238 |
|
nnm1nn0 |
⊢ ( 𝐷 ∈ ℕ → ( 𝐷 − 1 ) ∈ ℕ0 ) |
239 |
6 238
|
syl |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℕ0 ) |
240 |
239
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 − 1 ) ∈ ℕ0 ) |
241 |
228 240
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ∈ ℂ ) |
242 |
232 229
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) ∈ ℂ ) |
243 |
2 1
|
dgreq0 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑁 ) = 0 ) ) |
244 |
43 243
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑁 ) = 0 ) ) |
245 |
244
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 ≠ 0𝑝 ↔ ( 𝐴 ‘ 𝑁 ) ≠ 0 ) ) |
246 |
82 245
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) ≠ 0 ) |
247 |
241 242 246
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ∈ ℂ ) |
248 |
237 247
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = ( - - 𝑧 + - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
249 |
237 242
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) ∈ ℂ ) |
250 |
249 241 242 246
|
divdird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) / ( 𝐴 ‘ 𝑁 ) ) = ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) / ( 𝐴 ‘ 𝑁 ) ) + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
251 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
252 |
11 251
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
253 |
252
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
254 |
173 174
|
coemul |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( 𝑁 − 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
255 |
68 32 253 254
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( 𝑁 − 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
256 |
156
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ ( 𝑁 − 1 ) ) = ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( 𝑁 − 1 ) ) ) |
257 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
258 |
257
|
oveq2i |
⊢ ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
259 |
258
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 0 ... 1 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) |
260 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
261 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
262 |
260 261
|
eleqtri |
⊢ 0 ∈ ( ℤ≥ ‘ 0 ) |
263 |
262
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 0 ∈ ( ℤ≥ ‘ 0 ) ) |
264 |
258
|
eleq2i |
⊢ ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ) |
265 |
173
|
coef3 |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) : ℕ0 ⟶ ℂ ) |
266 |
68 265
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) : ℕ0 ⟶ ℂ ) |
267 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 1 ) → 𝑘 ∈ ℕ0 ) |
268 |
|
ffvelrn |
⊢ ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
269 |
266 267 268
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
270 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 + 1 ) − 1 ) = ( 𝑁 − 1 ) ) |
271 |
|
pncan |
⊢ ( ( 𝐷 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐷 + 1 ) − 1 ) = 𝐷 ) |
272 |
101 100 271
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐷 + 1 ) − 1 ) = 𝐷 ) |
273 |
270 272
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) = 𝐷 ) |
274 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) = 𝐷 ) |
275 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ∈ ℕ ) |
276 |
274 275
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
277 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
278 |
276 277
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
279 |
|
fzss2 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 0 ... 1 ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
280 |
278 279
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 0 ... 1 ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
281 |
280
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
282 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) − 𝑘 ) ∈ ℕ0 ) |
283 |
|
ffvelrn |
⊢ ( ( ( coeff ‘ 𝑄 ) : ℕ0 ⟶ ℂ ∧ ( ( 𝑁 − 1 ) − 𝑘 ) ∈ ℕ0 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
284 |
228 282 283
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
285 |
281 284
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
286 |
269 285
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ∈ ℂ ) |
287 |
264 286
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ∈ ℂ ) |
288 |
|
id |
⊢ ( 𝑘 = ( 0 + 1 ) → 𝑘 = ( 0 + 1 ) ) |
289 |
288 257
|
eqtr4di |
⊢ ( 𝑘 = ( 0 + 1 ) → 𝑘 = 1 ) |
290 |
289
|
fveq2d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) ) |
291 |
289
|
oveq2d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( 𝑁 − 1 ) − 𝑘 ) = ( ( 𝑁 − 1 ) − 1 ) ) |
292 |
291
|
fveq2d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
293 |
290 292
|
oveq12d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) |
294 |
263 287 293
|
fsump1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) + ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) ) |
295 |
259 294
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) + ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) ) |
296 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → ¬ 𝑘 ∈ ( 0 ... 1 ) ) |
297 |
296
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 1 ) ) |
298 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
299 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
300 |
298 299
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → 𝑘 ∈ ℕ0 ) |
301 |
173 166
|
dgrub |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑘 ∈ ℕ0 ∧ ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) |
302 |
301
|
3expia |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
303 |
68 300 302
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
304 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
305 |
298 304
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
306 |
305
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
307 |
|
1z |
⊢ 1 ∈ ℤ |
308 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 0 ) ∧ 1 ∈ ℤ ) → ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ≤ 1 ) ) |
309 |
306 307 308
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ≤ 1 ) ) |
310 |
158
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ↔ 𝑘 ≤ 1 ) ) |
311 |
310
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ↔ 𝑘 ≤ 1 ) ) |
312 |
309 311
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
313 |
303 312
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ ( 0 ... 1 ) ) ) |
314 |
313
|
necon1bd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... 1 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = 0 ) ) |
315 |
297 314
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = 0 ) |
316 |
315
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( 0 · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
317 |
298 284
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
318 |
317
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 0 · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = 0 ) |
319 |
316 318
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = 0 ) |
320 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
321 |
280 286 319 320
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
322 |
|
0z |
⊢ 0 ∈ ℤ |
323 |
186
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) ) |
324 |
|
coeidp |
⊢ ( 0 ∈ ℕ0 → ( ( coeff ‘ Xp ) ‘ 0 ) = if ( 0 = 1 , 1 , 0 ) ) |
325 |
159
|
nesymi |
⊢ ¬ 0 = 1 |
326 |
325
|
iffalsei |
⊢ if ( 0 = 1 , 1 , 0 ) = 0 |
327 |
324 326
|
eqtrdi |
⊢ ( 0 ∈ ℕ0 → ( ( coeff ‘ Xp ) ‘ 0 ) = 0 ) |
328 |
327
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( ( coeff ‘ Xp ) ‘ 0 ) = 0 ) |
329 |
184
|
coefv0 |
⊢ ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) → ( ( ℂ × { 𝑧 } ) ‘ 0 ) = ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) ) |
330 |
182 329
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ℂ × { 𝑧 } ) ‘ 0 ) = ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) ) |
331 |
|
0cn |
⊢ 0 ∈ ℂ |
332 |
|
vex |
⊢ 𝑧 ∈ V |
333 |
332
|
fvconst2 |
⊢ ( 0 ∈ ℂ → ( ( ℂ × { 𝑧 } ) ‘ 0 ) = 𝑧 ) |
334 |
331 333
|
ax-mp |
⊢ ( ( ℂ × { 𝑧 } ) ‘ 0 ) = 𝑧 |
335 |
330 334
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) = 𝑧 ) |
336 |
335
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) = 𝑧 ) |
337 |
192 195 197 197 198 328 336
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = ( 0 − 𝑧 ) ) |
338 |
260 337
|
mpan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = ( 0 − 𝑧 ) ) |
339 |
|
df-neg |
⊢ - 𝑧 = ( 0 − 𝑧 ) |
340 |
338 339
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = - 𝑧 ) |
341 |
323 340
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = - 𝑧 ) |
342 |
274
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝑁 − 1 ) − 0 ) = ( 𝐷 − 0 ) ) |
343 |
102
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 − 0 ) = 𝐷 ) |
344 |
342 343 31
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝑁 − 1 ) − 0 ) = ( deg ‘ 𝑄 ) ) |
345 |
344
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
346 |
345 232
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) = ( 𝐴 ‘ 𝑁 ) ) |
347 |
341 346
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) = ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) ) |
348 |
347 249
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ∈ ℂ ) |
349 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) ) |
350 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝑁 − 1 ) − 𝑘 ) = ( ( 𝑁 − 1 ) − 0 ) ) |
351 |
350
|
fveq2d |
⊢ ( 𝑘 = 0 → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) |
352 |
349 351
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ) |
353 |
352
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ) |
354 |
322 348 353
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ) |
355 |
354 347
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) ) |
356 |
274
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) |
357 |
224 356
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) = ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) ) |
358 |
241
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) |
359 |
357 358
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) |
360 |
355 359
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) + ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) = ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) ) |
361 |
295 321 360
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
362 |
255 256 361
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) = ( 𝐴 ‘ ( 𝑁 − 1 ) ) ) |
363 |
362
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) / ( 𝐴 ‘ 𝑁 ) ) = ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
364 |
237 242 246
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) / ( 𝐴 ‘ 𝑁 ) ) = - 𝑧 ) |
365 |
364
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) / ( 𝐴 ‘ 𝑁 ) ) + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
366 |
250 363 365
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
367 |
366
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
368 |
248 367
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( - - 𝑧 + - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
369 |
128 236 368
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ 𝑅 𝑥 = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
370 |
28 369
|
exlimddv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑅 𝑥 = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |