Metamath Proof Explorer


Theorem viin

Description: Indexed intersection with a universal index class. When A doesn't depend on x , this evaluates to A by 19.3 and abid2 . When A = x , this evaluates to (/) by intiin and intv . (Contributed by NM, 11-Sep-2008)

Ref Expression
Assertion viin 𝑥 ∈ V 𝐴 = { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 }

Proof

Step Hyp Ref Expression
1 df-iin 𝑥 ∈ V 𝐴 = { 𝑦 ∣ ∀ 𝑥 ∈ V 𝑦𝐴 }
2 ralv ( ∀ 𝑥 ∈ V 𝑦𝐴 ↔ ∀ 𝑥 𝑦𝐴 )
3 2 abbii { 𝑦 ∣ ∀ 𝑥 ∈ V 𝑦𝐴 } = { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 }
4 1 3 eqtri 𝑥 ∈ V 𝐴 = { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 }