| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 2 | 1 | pwex | ⊢ 𝒫  ℝ  ∈  V | 
						
							| 3 |  | weinxp | ⊢ (  <   We  ℝ  ↔  (  <   ∩  ( ℝ  ×  ℝ ) )  We  ℝ ) | 
						
							| 4 |  | unipw | ⊢ ∪  𝒫  ℝ  =  ℝ | 
						
							| 5 |  | weeq2 | ⊢ ( ∪  𝒫  ℝ  =  ℝ  →  ( (  <   ∩  ( ℝ  ×  ℝ ) )  We  ∪  𝒫  ℝ  ↔  (  <   ∩  ( ℝ  ×  ℝ ) )  We  ℝ ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( (  <   ∩  ( ℝ  ×  ℝ ) )  We  ∪  𝒫  ℝ  ↔  (  <   ∩  ( ℝ  ×  ℝ ) )  We  ℝ ) | 
						
							| 7 | 3 6 | bitr4i | ⊢ (  <   We  ℝ  ↔  (  <   ∩  ( ℝ  ×  ℝ ) )  We  ∪  𝒫  ℝ ) | 
						
							| 8 | 1 1 | xpex | ⊢ ( ℝ  ×  ℝ )  ∈  V | 
						
							| 9 | 8 | inex2 | ⊢ (  <   ∩  ( ℝ  ×  ℝ ) )  ∈  V | 
						
							| 10 |  | weeq1 | ⊢ ( 𝑥  =  (  <   ∩  ( ℝ  ×  ℝ ) )  →  ( 𝑥  We  ∪  𝒫  ℝ  ↔  (  <   ∩  ( ℝ  ×  ℝ ) )  We  ∪  𝒫  ℝ ) ) | 
						
							| 11 | 9 10 | spcev | ⊢ ( (  <   ∩  ( ℝ  ×  ℝ ) )  We  ∪  𝒫  ℝ  →  ∃ 𝑥 𝑥  We  ∪  𝒫  ℝ ) | 
						
							| 12 | 7 11 | sylbi | ⊢ (  <   We  ℝ  →  ∃ 𝑥 𝑥  We  ∪  𝒫  ℝ ) | 
						
							| 13 |  | dfac8c | ⊢ ( 𝒫  ℝ  ∈  V  →  ( ∃ 𝑥 𝑥  We  ∪  𝒫  ℝ  →  ∃ 𝑓 ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 14 | 2 12 13 | mpsyl | ⊢ (  <   We  ℝ  →  ∃ 𝑓 ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 15 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 16 | 15 | inex1 | ⊢ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∈  V | 
						
							| 17 |  | nnrecq | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  𝑥 )  ∈  ℚ ) | 
						
							| 18 |  | nnrecre | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 19 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  - 1  ∈  ℝ ) | 
						
							| 21 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 23 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 24 | 19 21 23 | ltleii | ⊢ - 1  ≤  0 | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑥  ∈  ℕ  →  - 1  ≤  0 ) | 
						
							| 26 |  | nnrp | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ+ ) | 
						
							| 27 | 26 | rpreccld | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 28 | 27 | rpge0d | ⊢ ( 𝑥  ∈  ℕ  →  0  ≤  ( 1  /  𝑥 ) ) | 
						
							| 29 | 20 22 18 25 28 | letrd | ⊢ ( 𝑥  ∈  ℕ  →  - 1  ≤  ( 1  /  𝑥 ) ) | 
						
							| 30 |  | nnge1 | ⊢ ( 𝑥  ∈  ℕ  →  1  ≤  𝑥 ) | 
						
							| 31 |  | nnre | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ ) | 
						
							| 32 |  | nngt0 | ⊢ ( 𝑥  ∈  ℕ  →  0  <  𝑥 ) | 
						
							| 33 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 34 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 35 |  | lerec | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) )  →  ( 1  ≤  𝑥  ↔  ( 1  /  𝑥 )  ≤  ( 1  /  1 ) ) ) | 
						
							| 36 | 33 34 35 | mpanl12 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 )  →  ( 1  ≤  𝑥  ↔  ( 1  /  𝑥 )  ≤  ( 1  /  1 ) ) ) | 
						
							| 37 | 31 32 36 | syl2anc | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  ≤  𝑥  ↔  ( 1  /  𝑥 )  ≤  ( 1  /  1 ) ) ) | 
						
							| 38 | 30 37 | mpbid | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  𝑥 )  ≤  ( 1  /  1 ) ) | 
						
							| 39 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 40 | 38 39 | breqtrdi | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  𝑥 )  ≤  1 ) | 
						
							| 41 | 19 33 | elicc2i | ⊢ ( ( 1  /  𝑥 )  ∈  ( - 1 [,] 1 )  ↔  ( ( 1  /  𝑥 )  ∈  ℝ  ∧  - 1  ≤  ( 1  /  𝑥 )  ∧  ( 1  /  𝑥 )  ≤  1 ) ) | 
						
							| 42 | 18 29 40 41 | syl3anbrc | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  𝑥 )  ∈  ( - 1 [,] 1 ) ) | 
						
							| 43 | 17 42 | elind | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  𝑥 )  ∈  ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 44 |  | oveq2 | ⊢ ( ( 1  /  𝑥 )  =  ( 1  /  𝑦 )  →  ( 1  /  ( 1  /  𝑥 ) )  =  ( 1  /  ( 1  /  𝑦 ) ) ) | 
						
							| 45 |  | nncn | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℂ ) | 
						
							| 46 |  | nnne0 | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ≠  0 ) | 
						
							| 47 | 45 46 | recrecd | ⊢ ( 𝑥  ∈  ℕ  →  ( 1  /  ( 1  /  𝑥 ) )  =  𝑥 ) | 
						
							| 48 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 49 |  | nnne0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ≠  0 ) | 
						
							| 50 | 48 49 | recrecd | ⊢ ( 𝑦  ∈  ℕ  →  ( 1  /  ( 1  /  𝑦 ) )  =  𝑦 ) | 
						
							| 51 | 47 50 | eqeqan12d | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ( 1  /  ( 1  /  𝑥 ) )  =  ( 1  /  ( 1  /  𝑦 ) )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 52 | 44 51 | imbitrid | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ( 1  /  𝑥 )  =  ( 1  /  𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 1  /  𝑥 )  =  ( 1  /  𝑦 ) ) | 
						
							| 54 | 52 53 | impbid1 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ( 1  /  𝑥 )  =  ( 1  /  𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 55 | 43 54 | dom2 | ⊢ ( ( ℚ  ∩  ( - 1 [,] 1 ) )  ∈  V  →  ℕ  ≼  ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 56 | 16 55 | ax-mp | ⊢ ℕ  ≼  ( ℚ  ∩  ( - 1 [,] 1 ) ) | 
						
							| 57 |  | inss1 | ⊢ ( ℚ  ∩  ( - 1 [,] 1 ) )  ⊆  ℚ | 
						
							| 58 |  | ssdomg | ⊢ ( ℚ  ∈  V  →  ( ( ℚ  ∩  ( - 1 [,] 1 ) )  ⊆  ℚ  →  ( ℚ  ∩  ( - 1 [,] 1 ) )  ≼  ℚ ) ) | 
						
							| 59 | 15 57 58 | mp2 | ⊢ ( ℚ  ∩  ( - 1 [,] 1 ) )  ≼  ℚ | 
						
							| 60 |  | qnnen | ⊢ ℚ  ≈  ℕ | 
						
							| 61 |  | domentr | ⊢ ( ( ( ℚ  ∩  ( - 1 [,] 1 ) )  ≼  ℚ  ∧  ℚ  ≈  ℕ )  →  ( ℚ  ∩  ( - 1 [,] 1 ) )  ≼  ℕ ) | 
						
							| 62 | 59 60 61 | mp2an | ⊢ ( ℚ  ∩  ( - 1 [,] 1 ) )  ≼  ℕ | 
						
							| 63 |  | sbth | ⊢ ( ( ℕ  ≼  ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ( ℚ  ∩  ( - 1 [,] 1 ) )  ≼  ℕ )  →  ℕ  ≈  ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 64 | 56 62 63 | mp2an | ⊢ ℕ  ≈  ( ℚ  ∩  ( - 1 [,] 1 ) ) | 
						
							| 65 |  | bren | ⊢ ( ℕ  ≈  ( ℚ  ∩  ( - 1 [,] 1 ) )  ↔  ∃ 𝑔 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 66 | 64 65 | mpbi | ⊢ ∃ 𝑔 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) | 
						
							| 67 |  | eleq1w | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎  ∈  ( 0 [,] 1 )  ↔  𝑥  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 68 |  | eleq1w | ⊢ ( 𝑏  =  𝑦  →  ( 𝑏  ∈  ( 0 [,] 1 )  ↔  𝑦  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 69 | 67 68 | bi2anan9 | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ↔  ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] 1 ) ) ) ) | 
						
							| 70 |  | oveq12 | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( 𝑎  −  𝑏 )  =  ( 𝑥  −  𝑦 ) ) | 
						
							| 71 | 70 | eleq1d | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ( 𝑎  −  𝑏 )  ∈  ℚ  ↔  ( 𝑥  −  𝑦 )  ∈  ℚ ) ) | 
						
							| 72 | 69 71 | anbi12d | ⊢ ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  →  ( ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ )  ↔  ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑥  −  𝑦 )  ∈  ℚ ) ) ) | 
						
							| 73 | 72 | cbvopabv | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑥  −  𝑦 )  ∈  ℚ ) } | 
						
							| 74 |  | eqid | ⊢ ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  =  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) | 
						
							| 75 |  | fvex | ⊢ ( 𝑓 ‘ 𝑐 )  ∈  V | 
						
							| 76 |  | eqid | ⊢ ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  =  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) | 
						
							| 77 | 75 76 | fnmpti | ⊢ ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  Fn  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) | 
						
							| 78 | 77 | a1i | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  ( 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) )  →  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  Fn  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ) | 
						
							| 79 |  | neeq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  ≠  ∅  ↔  𝑤  ≠  ∅ ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑓 ‘ 𝑧 )  =  ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 81 |  | id | ⊢ ( 𝑧  =  𝑤  →  𝑧  =  𝑤 ) | 
						
							| 82 | 80 81 | eleq12d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑓 ‘ 𝑧 )  ∈  𝑧  ↔  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 83 | 79 82 | imbi12d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ↔  ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 84 | 83 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ↔  ∀ 𝑤  ∈  𝒫  ℝ ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 85 | 73 | vitalilem1 | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) }  Er  ( 0 [,] 1 ) | 
						
							| 86 | 85 | a1i | ⊢ ( ⊤  →  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) }  Er  ( 0 [,] 1 ) ) | 
						
							| 87 | 86 | qsss | ⊢ ( ⊤  →  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ⊆  𝒫  ( 0 [,] 1 ) ) | 
						
							| 88 | 87 | mptru | ⊢ ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ⊆  𝒫  ( 0 [,] 1 ) | 
						
							| 89 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 90 | 89 | sspwi | ⊢ 𝒫  ( 0 [,] 1 )  ⊆  𝒫  ℝ | 
						
							| 91 | 88 90 | sstri | ⊢ ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ⊆  𝒫  ℝ | 
						
							| 92 |  | ssralv | ⊢ ( ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ⊆  𝒫  ℝ  →  ( ∀ 𝑤  ∈  𝒫  ℝ ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 )  →  ∀ 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 93 | 91 92 | ax-mp | ⊢ ( ∀ 𝑤  ∈  𝒫  ℝ ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 )  →  ∀ 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 94 | 84 93 | sylbi | ⊢ ( ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ∀ 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 95 |  | fveq2 | ⊢ ( 𝑐  =  𝑤  →  ( 𝑓 ‘ 𝑐 )  =  ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 96 |  | fvex | ⊢ ( 𝑓 ‘ 𝑤 )  ∈  V | 
						
							| 97 | 95 76 96 | fvmpt | ⊢ ( 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  →  ( ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 )  =  ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 98 | 97 | eleq1d | ⊢ ( 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  →  ( ( ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 )  ∈  𝑤  ↔  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 99 | 98 | imbi2d | ⊢ ( 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  →  ( ( 𝑤  ≠  ∅  →  ( ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 )  ∈  𝑤 )  ↔  ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 100 | 99 | ralbiia | ⊢ ( ∀ 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ( 𝑤  ≠  ∅  →  ( ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 )  ∈  𝑤 )  ↔  ∀ 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ( 𝑤  ≠  ∅  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 101 | 94 100 | sylibr | ⊢ ( ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  →  ∀ 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ( 𝑤  ≠  ∅  →  ( ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 102 | 101 | ad2antlr | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  ( 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) )  →  ∀ 𝑤  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } ) ( 𝑤  ≠  ∅  →  ( ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 103 |  | simprl | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  ( 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) )  →  𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 104 |  | oveq1 | ⊢ ( 𝑡  =  𝑠  →  ( 𝑡  −  ( 𝑔 ‘ 𝑚 ) )  =  ( 𝑠  −  ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 105 | 104 | eleq1d | ⊢ ( 𝑡  =  𝑠  →  ( ( 𝑡  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ↔  ( 𝑠  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ) ) | 
						
							| 106 | 105 | cbvrabv | ⊢ { 𝑡  ∈  ℝ  ∣  ( 𝑡  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) }  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) } | 
						
							| 107 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑔 ‘ 𝑚 )  =  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑠  −  ( 𝑔 ‘ 𝑚 ) )  =  ( 𝑠  −  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 109 | 108 | eleq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑠  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ↔  ( 𝑠  −  ( 𝑔 ‘ 𝑛 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) ) ) | 
						
							| 110 | 109 | rabbidv | ⊢ ( 𝑚  =  𝑛  →  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) }  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝑔 ‘ 𝑛 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) } ) | 
						
							| 111 | 106 110 | eqtrid | ⊢ ( 𝑚  =  𝑛  →  { 𝑡  ∈  ℝ  ∣  ( 𝑡  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) }  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝑔 ‘ 𝑛 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) } ) | 
						
							| 112 | 111 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑡  ∈  ℝ  ∣  ( 𝑡  −  ( 𝑔 ‘ 𝑚 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) } )  =  ( 𝑛  ∈  ℕ  ↦  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝑔 ‘ 𝑛 ) )  ∈  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) ) } ) | 
						
							| 113 |  | simprr | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  ( 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) )  →  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) | 
						
							| 114 | 73 74 78 102 103 112 113 | vitalilem5 | ⊢ ¬  ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  ( 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) ) | 
						
							| 115 | 114 | pm2.21i | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  ( 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) )  →  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) | 
						
							| 116 | 115 | expr | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) )  →  ( ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol )  →  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) ) | 
						
							| 117 | 116 | pm2.18d | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) )  →  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) | 
						
							| 118 |  | eldif | ⊢ ( ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol )  ↔  ( ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  𝒫  ℝ  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  dom  vol ) ) | 
						
							| 119 |  | mblss | ⊢ ( 𝑥  ∈  dom  vol  →  𝑥  ⊆  ℝ ) | 
						
							| 120 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  ℝ  ↔  𝑥  ⊆  ℝ ) | 
						
							| 121 | 119 120 | sylibr | ⊢ ( 𝑥  ∈  dom  vol  →  𝑥  ∈  𝒫  ℝ ) | 
						
							| 122 | 121 | ssriv | ⊢ dom  vol  ⊆  𝒫  ℝ | 
						
							| 123 |  | ssnelpss | ⊢ ( dom  vol  ⊆  𝒫  ℝ  →  ( ( ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  𝒫  ℝ  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  dom  vol )  →  dom  vol  ⊊  𝒫  ℝ ) ) | 
						
							| 124 | 122 123 | ax-mp | ⊢ ( ( ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  𝒫  ℝ  ∧  ¬  ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  dom  vol )  →  dom  vol  ⊊  𝒫  ℝ ) | 
						
							| 125 | 118 124 | sylbi | ⊢ ( ran  ( 𝑐  ∈  ( ( 0 [,] 1 )  /  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 0 [,] 1 )  ∧  𝑏  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑎  −  𝑏 )  ∈  ℚ ) } )  ↦  ( 𝑓 ‘ 𝑐 ) )  ∈  ( 𝒫  ℝ  ∖  dom  vol )  →  dom  vol  ⊊  𝒫  ℝ ) | 
						
							| 126 | 117 125 | syl | ⊢ ( ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ∧  𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) )  →  dom  vol  ⊊  𝒫  ℝ ) | 
						
							| 127 | 126 | ex | ⊢ ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  →  ( 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  →  dom  vol  ⊊  𝒫  ℝ ) ) | 
						
							| 128 | 127 | exlimdv | ⊢ ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  →  ( ∃ 𝑔 𝑔 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  →  dom  vol  ⊊  𝒫  ℝ ) ) | 
						
							| 129 | 66 128 | mpi | ⊢ ( (  <   We  ℝ  ∧  ∀ 𝑧  ∈  𝒫  ℝ ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  →  dom  vol  ⊊  𝒫  ℝ ) | 
						
							| 130 | 14 129 | exlimddv | ⊢ (  <   We  ℝ  →  dom  vol  ⊊  𝒫  ℝ ) |