Step |
Hyp |
Ref |
Expression |
1 |
|
vitali.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } |
2 |
1
|
relopabiv |
⊢ Rel ∼ |
3 |
|
simplr |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑣 ∈ ( 0 [,] 1 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑢 ∈ ( 0 [,] 1 ) ) |
5 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
6 |
5
|
sseli |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → 𝑢 ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → 𝑢 ∈ ℂ ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑢 ∈ ℂ ) |
9 |
5
|
sseli |
⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ℂ ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑣 ∈ ℂ ) |
12 |
8 11
|
negsubdi2d |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → - ( 𝑢 − 𝑣 ) = ( 𝑣 − 𝑢 ) ) |
13 |
|
qnegcl |
⊢ ( ( 𝑢 − 𝑣 ) ∈ ℚ → - ( 𝑢 − 𝑣 ) ∈ ℚ ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → - ( 𝑢 − 𝑣 ) ∈ ℚ ) |
15 |
12 14
|
eqeltrrd |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → ( 𝑣 − 𝑢 ) ∈ ℚ ) |
16 |
3 4 15
|
jca31 |
⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑢 ) ∈ ℚ ) ) |
17 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑥 − 𝑦 ) = ( 𝑢 − 𝑣 ) ) |
18 |
17
|
eleq1d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑢 − 𝑣 ) ∈ ℚ ) ) |
19 |
18 1
|
brab2a |
⊢ ( 𝑢 ∼ 𝑣 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) ) |
20 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑢 ) → ( 𝑥 − 𝑦 ) = ( 𝑣 − 𝑢 ) ) |
21 |
20
|
eleq1d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑢 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑣 − 𝑢 ) ∈ ℚ ) ) |
22 |
21 1
|
brab2a |
⊢ ( 𝑣 ∼ 𝑢 ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑢 ) ∈ ℚ ) ) |
23 |
16 19 22
|
3imtr4i |
⊢ ( 𝑢 ∼ 𝑣 → 𝑣 ∼ 𝑢 ) |
24 |
|
simpl |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∼ 𝑣 ) |
25 |
24 19
|
sylib |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) ) |
26 |
25
|
simpld |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ) |
27 |
26
|
simpld |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∈ ( 0 [,] 1 ) ) |
28 |
|
simpr |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑣 ∼ 𝑤 ) |
29 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑤 ) → ( 𝑥 − 𝑦 ) = ( 𝑣 − 𝑤 ) ) |
30 |
29
|
eleq1d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑣 − 𝑤 ) ∈ ℚ ) ) |
31 |
30 1
|
brab2a |
⊢ ( 𝑣 ∼ 𝑤 ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑤 ) ∈ ℚ ) ) |
32 |
28 31
|
sylib |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑤 ) ∈ ℚ ) ) |
33 |
32
|
simpld |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ) |
34 |
33
|
simprd |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) ) |
35 |
27 7
|
syl |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∈ ℂ ) |
36 |
25 11
|
syl |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑣 ∈ ℂ ) |
37 |
5 34
|
sselid |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑤 ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑤 ∈ ℂ ) |
39 |
35 36 38
|
npncand |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑢 − 𝑣 ) + ( 𝑣 − 𝑤 ) ) = ( 𝑢 − 𝑤 ) ) |
40 |
25
|
simprd |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑢 − 𝑣 ) ∈ ℚ ) |
41 |
32
|
simprd |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑣 − 𝑤 ) ∈ ℚ ) |
42 |
|
qaddcl |
⊢ ( ( ( 𝑢 − 𝑣 ) ∈ ℚ ∧ ( 𝑣 − 𝑤 ) ∈ ℚ ) → ( ( 𝑢 − 𝑣 ) + ( 𝑣 − 𝑤 ) ) ∈ ℚ ) |
43 |
40 41 42
|
syl2anc |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑢 − 𝑣 ) + ( 𝑣 − 𝑤 ) ) ∈ ℚ ) |
44 |
39 43
|
eqeltrrd |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑢 − 𝑤 ) ∈ ℚ ) |
45 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑤 ) → ( 𝑥 − 𝑦 ) = ( 𝑢 − 𝑤 ) ) |
46 |
45
|
eleq1d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑢 − 𝑤 ) ∈ ℚ ) ) |
47 |
46 1
|
brab2a |
⊢ ( 𝑢 ∼ 𝑤 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑤 ) ∈ ℚ ) ) |
48 |
27 34 44 47
|
syl21anbrc |
⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∼ 𝑤 ) |
49 |
7
|
subidd |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → ( 𝑢 − 𝑢 ) = 0 ) |
50 |
|
0z |
⊢ 0 ∈ ℤ |
51 |
|
zq |
⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) |
52 |
50 51
|
ax-mp |
⊢ 0 ∈ ℚ |
53 |
49 52
|
eqeltrdi |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → ( 𝑢 − 𝑢 ) ∈ ℚ ) |
54 |
53
|
adantr |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) → ( 𝑢 − 𝑢 ) ∈ ℚ ) |
55 |
54
|
pm4.71i |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑢 ) ∈ ℚ ) ) |
56 |
|
pm4.24 |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) ↔ ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ) |
57 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑥 − 𝑦 ) = ( 𝑢 − 𝑢 ) ) |
58 |
57
|
eleq1d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑢 − 𝑢 ) ∈ ℚ ) ) |
59 |
58 1
|
brab2a |
⊢ ( 𝑢 ∼ 𝑢 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑢 ) ∈ ℚ ) ) |
60 |
55 56 59
|
3bitr4i |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) ↔ 𝑢 ∼ 𝑢 ) |
61 |
2 23 48 60
|
iseri |
⊢ ∼ Er ( 0 [,] 1 ) |