Metamath Proof Explorer


Theorem vitalilem1

Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by AV, 1-May-2021)

Ref Expression
Hypothesis vitali.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥𝑦 ) ∈ ℚ ) }
Assertion vitalilem1 Er ( 0 [,] 1 )

Proof

Step Hyp Ref Expression
1 vitali.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥𝑦 ) ∈ ℚ ) }
2 1 relopabiv Rel
3 simplr ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → 𝑣 ∈ ( 0 [,] 1 ) )
4 simpll ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → 𝑢 ∈ ( 0 [,] 1 ) )
5 unitssre ( 0 [,] 1 ) ⊆ ℝ
6 5 sseli ( 𝑢 ∈ ( 0 [,] 1 ) → 𝑢 ∈ ℝ )
7 6 recnd ( 𝑢 ∈ ( 0 [,] 1 ) → 𝑢 ∈ ℂ )
8 7 ad2antrr ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → 𝑢 ∈ ℂ )
9 5 sseli ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ℝ )
10 9 recnd ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ℂ )
11 10 ad2antlr ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → 𝑣 ∈ ℂ )
12 8 11 negsubdi2d ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → - ( 𝑢𝑣 ) = ( 𝑣𝑢 ) )
13 qnegcl ( ( 𝑢𝑣 ) ∈ ℚ → - ( 𝑢𝑣 ) ∈ ℚ )
14 13 adantl ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → - ( 𝑢𝑣 ) ∈ ℚ )
15 12 14 eqeltrrd ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → ( 𝑣𝑢 ) ∈ ℚ )
16 3 4 15 jca31 ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣𝑢 ) ∈ ℚ ) )
17 oveq12 ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → ( 𝑥𝑦 ) = ( 𝑢𝑣 ) )
18 17 eleq1d ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → ( ( 𝑥𝑦 ) ∈ ℚ ↔ ( 𝑢𝑣 ) ∈ ℚ ) )
19 18 1 brab2a ( 𝑢 𝑣 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) )
20 oveq12 ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( 𝑥𝑦 ) = ( 𝑣𝑢 ) )
21 20 eleq1d ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( ( 𝑥𝑦 ) ∈ ℚ ↔ ( 𝑣𝑢 ) ∈ ℚ ) )
22 21 1 brab2a ( 𝑣 𝑢 ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣𝑢 ) ∈ ℚ ) )
23 16 19 22 3imtr4i ( 𝑢 𝑣𝑣 𝑢 )
24 simpl ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑢 𝑣 )
25 24 19 sylib ( ( 𝑢 𝑣𝑣 𝑤 ) → ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑣 ) ∈ ℚ ) )
26 25 simpld ( ( 𝑢 𝑣𝑣 𝑤 ) → ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) )
27 26 simpld ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑢 ∈ ( 0 [,] 1 ) )
28 simpr ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑣 𝑤 )
29 oveq12 ( ( 𝑥 = 𝑣𝑦 = 𝑤 ) → ( 𝑥𝑦 ) = ( 𝑣𝑤 ) )
30 29 eleq1d ( ( 𝑥 = 𝑣𝑦 = 𝑤 ) → ( ( 𝑥𝑦 ) ∈ ℚ ↔ ( 𝑣𝑤 ) ∈ ℚ ) )
31 30 1 brab2a ( 𝑣 𝑤 ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣𝑤 ) ∈ ℚ ) )
32 28 31 sylib ( ( 𝑢 𝑣𝑣 𝑤 ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣𝑤 ) ∈ ℚ ) )
33 32 simpld ( ( 𝑢 𝑣𝑣 𝑤 ) → ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) )
34 33 simprd ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) )
35 27 7 syl ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑢 ∈ ℂ )
36 25 11 syl ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑣 ∈ ℂ )
37 5 34 sselid ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑤 ∈ ℝ )
38 37 recnd ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑤 ∈ ℂ )
39 35 36 38 npncand ( ( 𝑢 𝑣𝑣 𝑤 ) → ( ( 𝑢𝑣 ) + ( 𝑣𝑤 ) ) = ( 𝑢𝑤 ) )
40 25 simprd ( ( 𝑢 𝑣𝑣 𝑤 ) → ( 𝑢𝑣 ) ∈ ℚ )
41 32 simprd ( ( 𝑢 𝑣𝑣 𝑤 ) → ( 𝑣𝑤 ) ∈ ℚ )
42 qaddcl ( ( ( 𝑢𝑣 ) ∈ ℚ ∧ ( 𝑣𝑤 ) ∈ ℚ ) → ( ( 𝑢𝑣 ) + ( 𝑣𝑤 ) ) ∈ ℚ )
43 40 41 42 syl2anc ( ( 𝑢 𝑣𝑣 𝑤 ) → ( ( 𝑢𝑣 ) + ( 𝑣𝑤 ) ) ∈ ℚ )
44 39 43 eqeltrrd ( ( 𝑢 𝑣𝑣 𝑤 ) → ( 𝑢𝑤 ) ∈ ℚ )
45 oveq12 ( ( 𝑥 = 𝑢𝑦 = 𝑤 ) → ( 𝑥𝑦 ) = ( 𝑢𝑤 ) )
46 45 eleq1d ( ( 𝑥 = 𝑢𝑦 = 𝑤 ) → ( ( 𝑥𝑦 ) ∈ ℚ ↔ ( 𝑢𝑤 ) ∈ ℚ ) )
47 46 1 brab2a ( 𝑢 𝑤 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑤 ) ∈ ℚ ) )
48 27 34 44 47 syl21anbrc ( ( 𝑢 𝑣𝑣 𝑤 ) → 𝑢 𝑤 )
49 7 subidd ( 𝑢 ∈ ( 0 [,] 1 ) → ( 𝑢𝑢 ) = 0 )
50 0z 0 ∈ ℤ
51 zq ( 0 ∈ ℤ → 0 ∈ ℚ )
52 50 51 ax-mp 0 ∈ ℚ
53 49 52 eqeltrdi ( 𝑢 ∈ ( 0 [,] 1 ) → ( 𝑢𝑢 ) ∈ ℚ )
54 53 adantr ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) → ( 𝑢𝑢 ) ∈ ℚ )
55 54 pm4.71i ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑢 ) ∈ ℚ ) )
56 pm4.24 ( 𝑢 ∈ ( 0 [,] 1 ) ↔ ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) )
57 oveq12 ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → ( 𝑥𝑦 ) = ( 𝑢𝑢 ) )
58 57 eleq1d ( ( 𝑥 = 𝑢𝑦 = 𝑢 ) → ( ( 𝑥𝑦 ) ∈ ℚ ↔ ( 𝑢𝑢 ) ∈ ℚ ) )
59 58 1 brab2a ( 𝑢 𝑢 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢𝑢 ) ∈ ℚ ) )
60 55 56 59 3bitr4i ( 𝑢 ∈ ( 0 [,] 1 ) ↔ 𝑢 𝑢 )
61 2 23 48 60 iseri Er ( 0 [,] 1 )