| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vitali.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑥  −  𝑦 )  ∈  ℚ ) } | 
						
							| 2 | 1 | relopabiv | ⊢ Rel   ∼ | 
						
							| 3 |  | simplr | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  𝑣  ∈  ( 0 [,] 1 ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  𝑢  ∈  ( 0 [,] 1 ) ) | 
						
							| 5 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 6 | 5 | sseli | ⊢ ( 𝑢  ∈  ( 0 [,] 1 )  →  𝑢  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( 𝑢  ∈  ( 0 [,] 1 )  →  𝑢  ∈  ℂ ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  𝑢  ∈  ℂ ) | 
						
							| 9 | 5 | sseli | ⊢ ( 𝑣  ∈  ( 0 [,] 1 )  →  𝑣  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( 𝑣  ∈  ( 0 [,] 1 )  →  𝑣  ∈  ℂ ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  𝑣  ∈  ℂ ) | 
						
							| 12 | 8 11 | negsubdi2d | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  - ( 𝑢  −  𝑣 )  =  ( 𝑣  −  𝑢 ) ) | 
						
							| 13 |  | qnegcl | ⊢ ( ( 𝑢  −  𝑣 )  ∈  ℚ  →  - ( 𝑢  −  𝑣 )  ∈  ℚ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  - ( 𝑢  −  𝑣 )  ∈  ℚ ) | 
						
							| 15 | 12 14 | eqeltrrd | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  ( 𝑣  −  𝑢 )  ∈  ℚ ) | 
						
							| 16 | 3 4 15 | jca31 | ⊢ ( ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ )  →  ( ( 𝑣  ∈  ( 0 [,] 1 )  ∧  𝑢  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑣  −  𝑢 )  ∈  ℚ ) ) | 
						
							| 17 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( 𝑥  −  𝑦 )  =  ( 𝑢  −  𝑣 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ( 𝑥  −  𝑦 )  ∈  ℚ  ↔  ( 𝑢  −  𝑣 )  ∈  ℚ ) ) | 
						
							| 19 | 18 1 | brab2a | ⊢ ( 𝑢  ∼  𝑣  ↔  ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ ) ) | 
						
							| 20 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑣  ∧  𝑦  =  𝑢 )  →  ( 𝑥  −  𝑦 )  =  ( 𝑣  −  𝑢 ) ) | 
						
							| 21 | 20 | eleq1d | ⊢ ( ( 𝑥  =  𝑣  ∧  𝑦  =  𝑢 )  →  ( ( 𝑥  −  𝑦 )  ∈  ℚ  ↔  ( 𝑣  −  𝑢 )  ∈  ℚ ) ) | 
						
							| 22 | 21 1 | brab2a | ⊢ ( 𝑣  ∼  𝑢  ↔  ( ( 𝑣  ∈  ( 0 [,] 1 )  ∧  𝑢  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑣  −  𝑢 )  ∈  ℚ ) ) | 
						
							| 23 | 16 19 22 | 3imtr4i | ⊢ ( 𝑢  ∼  𝑣  →  𝑣  ∼  𝑢 ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑢  ∼  𝑣 ) | 
						
							| 25 | 24 19 | sylib | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑣 )  ∈  ℚ ) ) | 
						
							| 26 | 25 | simpld | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑢  ∈  ( 0 [,] 1 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑣  ∼  𝑤 ) | 
						
							| 29 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑣  ∧  𝑦  =  𝑤 )  →  ( 𝑥  −  𝑦 )  =  ( 𝑣  −  𝑤 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( ( 𝑥  =  𝑣  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥  −  𝑦 )  ∈  ℚ  ↔  ( 𝑣  −  𝑤 )  ∈  ℚ ) ) | 
						
							| 31 | 30 1 | brab2a | ⊢ ( 𝑣  ∼  𝑤  ↔  ( ( 𝑣  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑣  −  𝑤 )  ∈  ℚ ) ) | 
						
							| 32 | 28 31 | sylib | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( ( 𝑣  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑣  −  𝑤 )  ∈  ℚ ) ) | 
						
							| 33 | 32 | simpld | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( 𝑣  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 34 | 33 | simprd | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑤  ∈  ( 0 [,] 1 ) ) | 
						
							| 35 | 27 7 | syl | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑢  ∈  ℂ ) | 
						
							| 36 | 25 11 | syl | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑣  ∈  ℂ ) | 
						
							| 37 | 5 34 | sselid | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑤  ∈  ℝ ) | 
						
							| 38 | 37 | recnd | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑤  ∈  ℂ ) | 
						
							| 39 | 35 36 38 | npncand | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( ( 𝑢  −  𝑣 )  +  ( 𝑣  −  𝑤 ) )  =  ( 𝑢  −  𝑤 ) ) | 
						
							| 40 | 25 | simprd | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( 𝑢  −  𝑣 )  ∈  ℚ ) | 
						
							| 41 | 32 | simprd | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( 𝑣  −  𝑤 )  ∈  ℚ ) | 
						
							| 42 |  | qaddcl | ⊢ ( ( ( 𝑢  −  𝑣 )  ∈  ℚ  ∧  ( 𝑣  −  𝑤 )  ∈  ℚ )  →  ( ( 𝑢  −  𝑣 )  +  ( 𝑣  −  𝑤 ) )  ∈  ℚ ) | 
						
							| 43 | 40 41 42 | syl2anc | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( ( 𝑢  −  𝑣 )  +  ( 𝑣  −  𝑤 ) )  ∈  ℚ ) | 
						
							| 44 | 39 43 | eqeltrrd | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  ( 𝑢  −  𝑤 )  ∈  ℚ ) | 
						
							| 45 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑤 )  →  ( 𝑥  −  𝑦 )  =  ( 𝑢  −  𝑤 ) ) | 
						
							| 46 | 45 | eleq1d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥  −  𝑦 )  ∈  ℚ  ↔  ( 𝑢  −  𝑤 )  ∈  ℚ ) ) | 
						
							| 47 | 46 1 | brab2a | ⊢ ( 𝑢  ∼  𝑤  ↔  ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑤  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑤 )  ∈  ℚ ) ) | 
						
							| 48 | 27 34 44 47 | syl21anbrc | ⊢ ( ( 𝑢  ∼  𝑣  ∧  𝑣  ∼  𝑤 )  →  𝑢  ∼  𝑤 ) | 
						
							| 49 | 7 | subidd | ⊢ ( 𝑢  ∈  ( 0 [,] 1 )  →  ( 𝑢  −  𝑢 )  =  0 ) | 
						
							| 50 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 51 |  | zq | ⊢ ( 0  ∈  ℤ  →  0  ∈  ℚ ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ 0  ∈  ℚ | 
						
							| 53 | 49 52 | eqeltrdi | ⊢ ( 𝑢  ∈  ( 0 [,] 1 )  →  ( 𝑢  −  𝑢 )  ∈  ℚ ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑢  ∈  ( 0 [,] 1 ) )  →  ( 𝑢  −  𝑢 )  ∈  ℚ ) | 
						
							| 55 | 54 | pm4.71i | ⊢ ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑢  ∈  ( 0 [,] 1 ) )  ↔  ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑢  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑢 )  ∈  ℚ ) ) | 
						
							| 56 |  | pm4.24 | ⊢ ( 𝑢  ∈  ( 0 [,] 1 )  ↔  ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑢  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 57 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑢 )  →  ( 𝑥  −  𝑦 )  =  ( 𝑢  −  𝑢 ) ) | 
						
							| 58 | 57 | eleq1d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑢 )  →  ( ( 𝑥  −  𝑦 )  ∈  ℚ  ↔  ( 𝑢  −  𝑢 )  ∈  ℚ ) ) | 
						
							| 59 | 58 1 | brab2a | ⊢ ( 𝑢  ∼  𝑢  ↔  ( ( 𝑢  ∈  ( 0 [,] 1 )  ∧  𝑢  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑢  −  𝑢 )  ∈  ℚ ) ) | 
						
							| 60 | 55 56 59 | 3bitr4i | ⊢ ( 𝑢  ∈  ( 0 [,] 1 )  ↔  𝑢  ∼  𝑢 ) | 
						
							| 61 | 2 23 48 60 | iseri | ⊢  ∼   Er  ( 0 [,] 1 ) |