| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vitali.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 0 [,] 1 )  ∧  𝑦  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑥  −  𝑦 )  ∈  ℚ ) } | 
						
							| 2 |  | vitali.2 | ⊢ 𝑆  =  ( ( 0 [,] 1 )  /   ∼  ) | 
						
							| 3 |  | vitali.3 | ⊢ ( 𝜑  →  𝐹  Fn  𝑆 ) | 
						
							| 4 |  | vitali.4 | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑆 ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 5 |  | vitali.5 | ⊢ ( 𝜑  →  𝐺 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 6 |  | vitali.6 | ⊢ 𝑇  =  ( 𝑛  ∈  ℕ  ↦  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑛 ) )  ∈  ran  𝐹 } ) | 
						
							| 7 |  | vitali.7 | ⊢ ( 𝜑  →  ¬  ran  𝐹  ∈  ( 𝒫  ℝ  ∖  dom  vol ) ) | 
						
							| 8 |  | neeq1 | ⊢ ( [ 𝑣 ]  ∼   =  𝑧  →  ( [ 𝑣 ]  ∼   ≠  ∅  ↔  𝑧  ≠  ∅ ) ) | 
						
							| 9 | 1 | vitalilem1 | ⊢  ∼   Er  ( 0 [,] 1 ) | 
						
							| 10 |  | erdm | ⊢ (  ∼   Er  ( 0 [,] 1 )  →  dom   ∼   =  ( 0 [,] 1 ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ dom   ∼   =  ( 0 [,] 1 ) | 
						
							| 12 | 11 | eleq2i | ⊢ ( 𝑣  ∈  dom   ∼   ↔  𝑣  ∈  ( 0 [,] 1 ) ) | 
						
							| 13 |  | ecdmn0 | ⊢ ( 𝑣  ∈  dom   ∼   ↔  [ 𝑣 ]  ∼   ≠  ∅ ) | 
						
							| 14 | 12 13 | bitr3i | ⊢ ( 𝑣  ∈  ( 0 [,] 1 )  ↔  [ 𝑣 ]  ∼   ≠  ∅ ) | 
						
							| 15 | 14 | biimpi | ⊢ ( 𝑣  ∈  ( 0 [,] 1 )  →  [ 𝑣 ]  ∼   ≠  ∅ ) | 
						
							| 16 | 2 8 15 | ectocl | ⊢ ( 𝑧  ∈  𝑆  →  𝑧  ≠  ∅ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  𝑧  ≠  ∅ ) | 
						
							| 18 |  | sseq1 | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( [ 𝑤 ]  ∼   ⊆  ( 0 [,] 1 )  ↔  𝑧  ⊆  ( 0 [,] 1 ) ) ) | 
						
							| 19 | 9 | a1i | ⊢ ( 𝑤  ∈  ( 0 [,] 1 )  →   ∼   Er  ( 0 [,] 1 ) ) | 
						
							| 20 | 19 | ecss | ⊢ ( 𝑤  ∈  ( 0 [,] 1 )  →  [ 𝑤 ]  ∼   ⊆  ( 0 [,] 1 ) ) | 
						
							| 21 | 2 18 20 | ectocl | ⊢ ( 𝑧  ∈  𝑆  →  𝑧  ⊆  ( 0 [,] 1 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  𝑧  ⊆  ( 0 [,] 1 ) ) | 
						
							| 23 | 22 | sseld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑧  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 24 | 17 23 | embantd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 25 | 24 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑆 ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 )  →  ∀ 𝑧  ∈  𝑆 ( 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 26 | 4 25 | mpd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑆 ( 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 27 |  | ffnfv | ⊢ ( 𝐹 : 𝑆 ⟶ ( 0 [,] 1 )  ↔  ( 𝐹  Fn  𝑆  ∧  ∀ 𝑧  ∈  𝑆 ( 𝐹 ‘ 𝑧 )  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 28 | 3 26 27 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ) | 
						
							| 29 | 28 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 0 [,] 1 ) ) | 
						
							| 30 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝐺 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 31 |  | f1ocnv | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  →  ◡ 𝐺 : ( ℚ  ∩  ( - 1 [,] 1 ) ) –1-1-onto→ ℕ ) | 
						
							| 32 |  | f1of | ⊢ ( ◡ 𝐺 : ( ℚ  ∩  ( - 1 [,] 1 ) ) –1-1-onto→ ℕ  →  ◡ 𝐺 : ( ℚ  ∩  ( - 1 [,] 1 ) ) ⟶ ℕ ) | 
						
							| 33 | 30 31 32 | 3syl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ◡ 𝐺 : ( ℚ  ∩  ( - 1 [,] 1 ) ) ⟶ ℕ ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ∈  ( 0 [,] 1 ) ) | 
						
							| 35 | 34 14 | sylib | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  [ 𝑣 ]  ∼   ≠  ∅ ) | 
						
							| 36 |  | neeq1 | ⊢ ( 𝑧  =  [ 𝑣 ]  ∼   →  ( 𝑧  ≠  ∅  ↔  [ 𝑣 ]  ∼   ≠  ∅ ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑧  =  [ 𝑣 ]  ∼   →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) | 
						
							| 38 |  | id | ⊢ ( 𝑧  =  [ 𝑣 ]  ∼   →  𝑧  =  [ 𝑣 ]  ∼  ) | 
						
							| 39 | 37 38 | eleq12d | ⊢ ( 𝑧  =  [ 𝑣 ]  ∼   →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑧  ↔  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  [ 𝑣 ]  ∼  ) ) | 
						
							| 40 | 36 39 | imbi12d | ⊢ ( 𝑧  =  [ 𝑣 ]  ∼   →  ( ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 )  ↔  ( [ 𝑣 ]  ∼   ≠  ∅  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  [ 𝑣 ]  ∼  ) ) ) | 
						
							| 41 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ∀ 𝑧  ∈  𝑆 ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 42 |  | ovex | ⊢ ( 0 [,] 1 )  ∈  V | 
						
							| 43 |  | erex | ⊢ (  ∼   Er  ( 0 [,] 1 )  →  ( ( 0 [,] 1 )  ∈  V  →   ∼   ∈  V ) ) | 
						
							| 44 | 9 42 43 | mp2 | ⊢  ∼   ∈  V | 
						
							| 45 | 44 | ecelqsi | ⊢ ( 𝑣  ∈  ( 0 [,] 1 )  →  [ 𝑣 ]  ∼   ∈  ( ( 0 [,] 1 )  /   ∼  ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  [ 𝑣 ]  ∼   ∈  ( ( 0 [,] 1 )  /   ∼  ) ) | 
						
							| 47 | 46 2 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  [ 𝑣 ]  ∼   ∈  𝑆 ) | 
						
							| 48 | 40 41 47 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( [ 𝑣 ]  ∼   ≠  ∅  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  [ 𝑣 ]  ∼  ) ) | 
						
							| 49 | 35 48 | mpd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  [ 𝑣 ]  ∼  ) | 
						
							| 50 |  | fvex | ⊢ ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  V | 
						
							| 51 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 52 | 50 51 | elec | ⊢ ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  [ 𝑣 ]  ∼   ↔  𝑣  ∼  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) | 
						
							| 53 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑣  ∧  𝑦  =  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  →  ( 𝑥  −  𝑦 )  =  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) | 
						
							| 54 | 53 | eleq1d | ⊢ ( ( 𝑥  =  𝑣  ∧  𝑦  =  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  →  ( ( 𝑥  −  𝑦 )  ∈  ℚ  ↔  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ℚ ) ) | 
						
							| 55 | 54 1 | brab2a | ⊢ ( 𝑣  ∼  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ↔  ( ( 𝑣  ∈  ( 0 [,] 1 )  ∧  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ℚ ) ) | 
						
							| 56 | 52 55 | bitri | ⊢ ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  [ 𝑣 ]  ∼   ↔  ( ( 𝑣  ∈  ( 0 [,] 1 )  ∧  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ℚ ) ) | 
						
							| 57 | 49 56 | sylib | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑣  ∈  ( 0 [,] 1 )  ∧  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ℚ ) ) | 
						
							| 58 | 57 | simprd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ℚ ) | 
						
							| 59 |  | elicc01 | ⊢ ( 𝑣  ∈  ( 0 [,] 1 )  ↔  ( 𝑣  ∈  ℝ  ∧  0  ≤  𝑣  ∧  𝑣  ≤  1 ) ) | 
						
							| 60 | 34 59 | sylib | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  ∈  ℝ  ∧  0  ≤  𝑣  ∧  𝑣  ≤  1 ) ) | 
						
							| 61 | 60 | simp1d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ∈  ℝ ) | 
						
							| 62 | 57 | simpld | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  ∈  ( 0 [,] 1 )  ∧  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 63 | 62 | simprd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ( 0 [,] 1 ) ) | 
						
							| 64 |  | elicc01 | ⊢ ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ( 0 [,] 1 )  ↔  ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∧  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ≤  1 ) ) | 
						
							| 65 | 63 64 | sylib | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∧  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ≤  1 ) ) | 
						
							| 66 | 65 | simp1d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ℝ ) | 
						
							| 67 | 61 66 | resubcld | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ℝ ) | 
						
							| 68 | 66 61 | resubcld | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 )  ∈  ℝ ) | 
						
							| 69 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  1  ∈  ℝ ) | 
						
							| 70 | 60 | simp2d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  0  ≤  𝑣 ) | 
						
							| 71 | 66 61 | subge02d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 0  ≤  𝑣  ↔  ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 )  ≤  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) | 
						
							| 72 | 70 71 | mpbid | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 )  ≤  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) | 
						
							| 73 | 65 | simp3d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ≤  1 ) | 
						
							| 74 | 68 66 69 72 73 | letrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 )  ≤  1 ) | 
						
							| 75 | 68 69 | lenegd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 )  ≤  1  ↔  - 1  ≤  - ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 ) ) ) | 
						
							| 76 | 74 75 | mpbid | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  - 1  ≤  - ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 ) ) | 
						
							| 77 | 66 | recnd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ℂ ) | 
						
							| 78 | 61 | recnd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ∈  ℂ ) | 
						
							| 79 | 77 78 | negsubdi2d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  - ( ( 𝐹 ‘ [ 𝑣 ]  ∼  )  −  𝑣 )  =  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) | 
						
							| 80 | 76 79 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  - 1  ≤  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) | 
						
							| 81 | 65 | simp2d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  0  ≤  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) | 
						
							| 82 | 61 66 | subge02d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 0  ≤  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ↔  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ≤  𝑣 ) ) | 
						
							| 83 | 81 82 | mpbid | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ≤  𝑣 ) | 
						
							| 84 | 60 | simp3d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ≤  1 ) | 
						
							| 85 | 67 61 69 83 84 | letrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ≤  1 ) | 
						
							| 86 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 87 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 88 | 86 87 | elicc2i | ⊢ ( ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ( - 1 [,] 1 )  ↔  ( ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ℝ  ∧  - 1  ≤  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∧  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ≤  1 ) ) | 
						
							| 89 | 67 80 85 88 | syl3anbrc | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ( - 1 [,] 1 ) ) | 
						
							| 90 | 58 89 | elind | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 91 | 33 90 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  ∈  ℕ ) | 
						
							| 92 |  | oveq1 | ⊢ ( 𝑠  =  𝑣  →  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  =  ( 𝑣  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) ) ) | 
						
							| 93 | 92 | eleq1d | ⊢ ( 𝑠  =  𝑣  →  ( ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹  ↔  ( 𝑣  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 ) ) | 
						
							| 94 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  ∧  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) )  ∈  ( ℚ  ∩  ( - 1 [,] 1 ) ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) )  =  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) | 
						
							| 95 | 5 90 94 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) )  =  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  =  ( 𝑣  −  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) | 
						
							| 97 | 78 77 | nncand | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  =  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) | 
						
							| 98 | 96 97 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  =  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) | 
						
							| 99 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  𝑆  ∧  [ 𝑣 ]  ∼   ∈  𝑆 )  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ran  𝐹 ) | 
						
							| 100 | 3 47 99 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ [ 𝑣 ]  ∼  )  ∈  ran  𝐹 ) | 
						
							| 101 | 98 100 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑣  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 ) | 
						
							| 102 | 93 61 101 | elrabd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ∈  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 } ) | 
						
							| 103 |  | fveq2 | ⊢ ( 𝑛  =  ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( 𝑛  =  ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  →  ( 𝑠  −  ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) ) ) | 
						
							| 105 | 104 | eleq1d | ⊢ ( 𝑛  =  ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  →  ( ( 𝑠  −  ( 𝐺 ‘ 𝑛 ) )  ∈  ran  𝐹  ↔  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 ) ) | 
						
							| 106 | 105 | rabbidv | ⊢ ( 𝑛  =  ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  →  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑛 ) )  ∈  ran  𝐹 }  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 } ) | 
						
							| 107 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 108 | 107 | rabex | ⊢ { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 }  ∈  V | 
						
							| 109 | 106 6 108 | fvmpt | ⊢ ( ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  ∈  ℕ  →  ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) )  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 } ) | 
						
							| 110 | 91 109 | syl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) )  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  ∈  ran  𝐹 } ) | 
						
							| 111 | 102 110 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ∈  ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) ) | 
						
							| 112 |  | fveq2 | ⊢ ( 𝑚  =  ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  →  ( 𝑇 ‘ 𝑚 )  =  ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) ) | 
						
							| 113 | 112 | eliuni | ⊢ ( ( ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) )  ∈  ℕ  ∧  𝑣  ∈  ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣  −  ( 𝐹 ‘ [ 𝑣 ]  ∼  ) ) ) ) )  →  𝑣  ∈  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 ) ) | 
						
							| 114 | 91 111 113 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ∈  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 ) ) | 
						
							| 115 | 114 | ex | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 0 [,] 1 )  →  𝑣  ∈  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 ) ) ) | 
						
							| 116 | 115 | ssrdv | ⊢ ( 𝜑  →  ( 0 [,] 1 )  ⊆  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 ) ) | 
						
							| 117 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 )  ↔  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ( 𝑇 ‘ 𝑚 ) ) | 
						
							| 118 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑚 ) ) | 
						
							| 119 | 118 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑠  −  ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) ) ) | 
						
							| 120 | 119 | eleq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑠  −  ( 𝐺 ‘ 𝑛 ) )  ∈  ran  𝐹  ↔  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 ) ) | 
						
							| 121 | 120 | rabbidv | ⊢ ( 𝑛  =  𝑚  →  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑛 ) )  ∈  ran  𝐹 }  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 } ) | 
						
							| 122 | 107 | rabex | ⊢ { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 }  ∈  V | 
						
							| 123 | 121 6 122 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑇 ‘ 𝑚 )  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 } ) | 
						
							| 124 | 123 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑇 ‘ 𝑚 )  =  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 } ) | 
						
							| 125 | 124 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑇 ‘ 𝑚 )  ↔  𝑥  ∈  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 } ) ) | 
						
							| 126 | 125 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  𝑥  ∈  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 } ) | 
						
							| 127 |  | oveq1 | ⊢ ( 𝑠  =  𝑥  →  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  =  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) ) ) | 
						
							| 128 | 127 | eleq1d | ⊢ ( 𝑠  =  𝑥  →  ( ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹  ↔  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 ) ) | 
						
							| 129 | 128 | elrab | ⊢ ( 𝑥  ∈  { 𝑠  ∈  ℝ  ∣  ( 𝑠  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 }  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 ) ) | 
						
							| 130 | 126 129 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝑥  ∈  ℝ  ∧  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 ) ) | 
						
							| 131 | 130 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 132 | 86 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  - 1  ∈  ℝ ) | 
						
							| 133 |  | iccssre | ⊢ ( ( - 1  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( - 1 [,] 1 )  ⊆  ℝ ) | 
						
							| 134 | 86 87 133 | mp2an | ⊢ ( - 1 [,] 1 )  ⊆  ℝ | 
						
							| 135 |  | f1of | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ  ∩  ( - 1 [,] 1 ) )  →  𝐺 : ℕ ⟶ ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 136 | 5 135 | syl | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 137 | 136 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐺 ‘ 𝑚 )  ∈  ( ℚ  ∩  ( - 1 [,] 1 ) ) ) | 
						
							| 138 | 137 | elin2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐺 ‘ 𝑚 )  ∈  ( - 1 [,] 1 ) ) | 
						
							| 139 | 134 138 | sselid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐺 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 140 | 139 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝐺 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 141 | 138 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝐺 ‘ 𝑚 )  ∈  ( - 1 [,] 1 ) ) | 
						
							| 142 | 86 87 | elicc2i | ⊢ ( ( 𝐺 ‘ 𝑚 )  ∈  ( - 1 [,] 1 )  ↔  ( ( 𝐺 ‘ 𝑚 )  ∈  ℝ  ∧  - 1  ≤  ( 𝐺 ‘ 𝑚 )  ∧  ( 𝐺 ‘ 𝑚 )  ≤  1 ) ) | 
						
							| 143 | 141 142 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( ( 𝐺 ‘ 𝑚 )  ∈  ℝ  ∧  - 1  ≤  ( 𝐺 ‘ 𝑚 )  ∧  ( 𝐺 ‘ 𝑚 )  ≤  1 ) ) | 
						
							| 144 | 143 | simp2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  - 1  ≤  ( 𝐺 ‘ 𝑚 ) ) | 
						
							| 145 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ran  𝐹  ⊆  ( 0 [,] 1 ) ) | 
						
							| 146 | 130 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ran  𝐹 ) | 
						
							| 147 | 145 146 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 148 |  | elicc01 | ⊢ ( ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ( 0 [,] 1 )  ↔  ( ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∧  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ≤  1 ) ) | 
						
							| 149 | 147 148 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ∧  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ≤  1 ) ) | 
						
							| 150 | 149 | simp2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  0  ≤  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) ) ) | 
						
							| 151 | 131 140 | subge0d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 0  ≤  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ↔  ( 𝐺 ‘ 𝑚 )  ≤  𝑥 ) ) | 
						
							| 152 | 150 151 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝐺 ‘ 𝑚 )  ≤  𝑥 ) | 
						
							| 153 | 132 140 131 144 152 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  - 1  ≤  𝑥 ) | 
						
							| 154 |  | peano2re | ⊢ ( ( 𝐺 ‘ 𝑚 )  ∈  ℝ  →  ( ( 𝐺 ‘ 𝑚 )  +  1 )  ∈  ℝ ) | 
						
							| 155 | 140 154 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( ( 𝐺 ‘ 𝑚 )  +  1 )  ∈  ℝ ) | 
						
							| 156 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 157 | 156 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  2  ∈  ℝ ) | 
						
							| 158 | 149 | simp3d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ≤  1 ) | 
						
							| 159 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  1  ∈  ℝ ) | 
						
							| 160 | 131 140 159 | lesubadd2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( ( 𝑥  −  ( 𝐺 ‘ 𝑚 ) )  ≤  1  ↔  𝑥  ≤  ( ( 𝐺 ‘ 𝑚 )  +  1 ) ) ) | 
						
							| 161 | 158 160 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  𝑥  ≤  ( ( 𝐺 ‘ 𝑚 )  +  1 ) ) | 
						
							| 162 | 143 | simp3d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( 𝐺 ‘ 𝑚 )  ≤  1 ) | 
						
							| 163 | 140 159 159 162 | leadd1dd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( ( 𝐺 ‘ 𝑚 )  +  1 )  ≤  ( 1  +  1 ) ) | 
						
							| 164 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 165 | 163 164 | breqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  ( ( 𝐺 ‘ 𝑚 )  +  1 )  ≤  2 ) | 
						
							| 166 | 131 155 157 161 165 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  𝑥  ≤  2 ) | 
						
							| 167 | 86 156 | elicc2i | ⊢ ( 𝑥  ∈  ( - 1 [,] 2 )  ↔  ( 𝑥  ∈  ℝ  ∧  - 1  ≤  𝑥  ∧  𝑥  ≤  2 ) ) | 
						
							| 168 | 131 153 166 167 | syl3anbrc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑇 ‘ 𝑚 ) )  →  𝑥  ∈  ( - 1 [,] 2 ) ) | 
						
							| 169 | 168 | rexlimdva2 | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ 𝑥  ∈  ( 𝑇 ‘ 𝑚 )  →  𝑥  ∈  ( - 1 [,] 2 ) ) ) | 
						
							| 170 | 117 169 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 )  →  𝑥  ∈  ( - 1 [,] 2 ) ) ) | 
						
							| 171 | 170 | ssrdv | ⊢ ( 𝜑  →  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 )  ⊆  ( - 1 [,] 2 ) ) | 
						
							| 172 | 29 116 171 | 3jca | ⊢ ( 𝜑  →  ( ran  𝐹  ⊆  ( 0 [,] 1 )  ∧  ( 0 [,] 1 )  ⊆  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 )  ∧  ∪  𝑚  ∈  ℕ ( 𝑇 ‘ 𝑚 )  ⊆  ( - 1 [,] 2 ) ) ) |