| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vitali.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } |
| 2 |
|
vitali.2 |
⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) |
| 3 |
|
vitali.3 |
⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) |
| 4 |
|
vitali.4 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 5 |
|
vitali.5 |
⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 6 |
|
vitali.6 |
⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) |
| 7 |
|
vitali.7 |
⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 11 |
10
|
rabbidv |
⊢ ( 𝑛 = 𝑚 → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 12 |
|
reex |
⊢ ℝ ∈ V |
| 13 |
12
|
rabex |
⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ∈ V |
| 14 |
11 6 13
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) ) |
| 17 |
1 2 3 4 5 6 7
|
vitalilem2 |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |
| 18 |
17
|
simp1d |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 19 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 20 |
18 19
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ran 𝐹 ⊆ ℝ ) |
| 22 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 23 |
|
1re |
⊢ 1 ∈ ℝ |
| 24 |
|
iccssre |
⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) |
| 25 |
22 23 24
|
mp2an |
⊢ ( - 1 [,] 1 ) ⊆ ℝ |
| 26 |
|
f1of |
⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 28 |
27
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 29 |
28
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ) |
| 30 |
25 29
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
| 31 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 32 |
21 30 31
|
ovolshft |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ran 𝐹 ) = ( vol* ‘ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) ) |
| 33 |
16 32
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ran 𝐹 ) ) |
| 34 |
|
3re |
⊢ 3 ∈ ℝ |
| 35 |
34
|
rexri |
⊢ 3 ∈ ℝ* |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 ∈ ℝ* ) |
| 37 |
|
3rp |
⊢ 3 ∈ ℝ+ |
| 38 |
|
0re |
⊢ 0 ∈ ℝ |
| 39 |
|
0le1 |
⊢ 0 ≤ 1 |
| 40 |
|
ovolicc |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1 ) → ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) ) |
| 41 |
38 23 39 40
|
mp3an |
⊢ ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) |
| 42 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 43 |
41 42
|
eqtri |
⊢ ( vol* ‘ ( 0 [,] 1 ) ) = 1 |
| 44 |
43 23
|
eqeltri |
⊢ ( vol* ‘ ( 0 [,] 1 ) ) ∈ ℝ |
| 45 |
|
ovolsscl |
⊢ ( ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℝ ∧ ( vol* ‘ ( 0 [,] 1 ) ) ∈ ℝ ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 46 |
19 44 45
|
mp3an23 |
⊢ ( ran 𝐹 ⊆ ( 0 [,] 1 ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 47 |
18 46
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 0 < ( vol* ‘ ran 𝐹 ) ) |
| 50 |
48 49
|
elrpd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ+ ) |
| 51 |
|
rpdivcl |
⊢ ( ( 3 ∈ ℝ+ ∧ ( vol* ‘ ran 𝐹 ) ∈ ℝ+ ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ+ ) |
| 52 |
37 50 51
|
sylancr |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ+ ) |
| 53 |
52
|
rpred |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ ) |
| 54 |
52
|
rpge0d |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 0 ≤ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) |
| 55 |
|
flge0nn0 |
⊢ ( ( ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ ∧ 0 ≤ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) → ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) ∈ ℕ0 ) |
| 56 |
53 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) ∈ ℕ0 ) |
| 57 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) |
| 58 |
56 57
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) |
| 59 |
58
|
nnred |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℝ ) |
| 60 |
59 48
|
remulcld |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ℝ ) |
| 61 |
60
|
rexrd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ℝ* ) |
| 62 |
12
|
elpw2 |
⊢ ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ ) |
| 63 |
20 62
|
sylibr |
⊢ ( 𝜑 → ran 𝐹 ∈ 𝒫 ℝ ) |
| 64 |
63
|
anim1i |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) |
| 65 |
|
eldif |
⊢ ( ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ↔ ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) |
| 66 |
64 65
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 67 |
66
|
ex |
⊢ ( 𝜑 → ( ¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) |
| 68 |
7 67
|
mt3d |
⊢ ( 𝜑 → ran 𝐹 ∈ dom vol ) |
| 69 |
|
inss1 |
⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ |
| 70 |
|
qssre |
⊢ ℚ ⊆ ℝ |
| 71 |
69 70
|
sstri |
⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ |
| 72 |
|
fss |
⊢ ( ( 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ ) → 𝐺 : ℕ ⟶ ℝ ) |
| 73 |
27 71 72
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℝ ) |
| 74 |
73
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 75 |
|
shftmbl |
⊢ ( ( ran 𝐹 ∈ dom vol ∧ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) |
| 76 |
68 74 75
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) |
| 77 |
76 6
|
fmptd |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ dom vol ) |
| 78 |
77
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 79 |
78
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 80 |
|
iunmbl |
⊢ ( ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 81 |
79 80
|
syl |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 82 |
|
mblss |
⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) |
| 83 |
|
ovolcl |
⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 84 |
81 82 83
|
3syl |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 86 |
|
flltp1 |
⊢ ( ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ → ( 3 / ( vol* ‘ ran 𝐹 ) ) < ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) |
| 87 |
53 86
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) < ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) |
| 88 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 ∈ ℝ ) |
| 89 |
88 59 50
|
ltdivmul2d |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( 3 / ( vol* ‘ ran 𝐹 ) ) < ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ↔ 3 < ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) ) |
| 90 |
87 89
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 < ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) |
| 91 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 92 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 1 ∈ ℤ ) |
| 93 |
|
mblvol |
⊢ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) |
| 94 |
78 93
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) |
| 95 |
94 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ran 𝐹 ) ) |
| 96 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 97 |
95 96
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) |
| 98 |
97
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) |
| 99 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) |
| 100 |
98 99
|
fmptd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) : ℕ ⟶ ℝ ) |
| 101 |
100
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 102 |
91 92 101
|
serfre |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) : ℕ ⟶ ℝ ) |
| 103 |
102
|
frnd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⊆ ℝ ) |
| 104 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 105 |
103 104
|
sstrdi |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⊆ ℝ* ) |
| 106 |
95
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ran 𝐹 ) ) |
| 107 |
106
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ran 𝐹 ) ) ) |
| 108 |
|
fconstmpt |
⊢ ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ran 𝐹 ) ) |
| 109 |
107 108
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) |
| 110 |
109
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ) |
| 111 |
110
|
fveq1d |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) ) |
| 112 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ran 𝐹 ) ∈ ℂ ) |
| 113 |
|
ser1const |
⊢ ( ( ( vol* ‘ ran 𝐹 ) ∈ ℂ ∧ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) |
| 114 |
112 58 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) |
| 115 |
111 114
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) |
| 116 |
102
|
ffnd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) Fn ℕ ) |
| 117 |
|
fnfvelrn |
⊢ ( ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) Fn ℕ ∧ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 118 |
116 58 117
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 119 |
115 118
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 120 |
|
supxrub |
⊢ ( ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⊆ ℝ* ∧ ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 121 |
105 119 120
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 122 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 123 |
|
mblvol |
⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 124 |
122 123
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 125 |
78 97
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol ∧ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) ) |
| 126 |
125
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol ∧ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) ) |
| 127 |
1 2 3 4 5 6 7
|
vitalilem3 |
⊢ ( 𝜑 → Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 129 |
|
eqid |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) |
| 130 |
129 99
|
voliun |
⊢ ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol ∧ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) ∧ Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 131 |
126 128 130
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 132 |
124 131
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 133 |
121 132
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 134 |
36 61 85 90 133
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 135 |
17
|
simp3d |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) |
| 137 |
|
2re |
⊢ 2 ∈ ℝ |
| 138 |
|
iccssre |
⊢ ( ( - 1 ∈ ℝ ∧ 2 ∈ ℝ ) → ( - 1 [,] 2 ) ⊆ ℝ ) |
| 139 |
22 137 138
|
mp2an |
⊢ ( - 1 [,] 2 ) ⊆ ℝ |
| 140 |
|
ovolss |
⊢ ( ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ∧ ( - 1 [,] 2 ) ⊆ ℝ ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ ( vol* ‘ ( - 1 [,] 2 ) ) ) |
| 141 |
136 139 140
|
sylancl |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ ( vol* ‘ ( - 1 [,] 2 ) ) ) |
| 142 |
|
2cn |
⊢ 2 ∈ ℂ |
| 143 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 144 |
142 143
|
subnegi |
⊢ ( 2 − - 1 ) = ( 2 + 1 ) |
| 145 |
|
neg1lt0 |
⊢ - 1 < 0 |
| 146 |
|
2pos |
⊢ 0 < 2 |
| 147 |
22 38 137
|
lttri |
⊢ ( ( - 1 < 0 ∧ 0 < 2 ) → - 1 < 2 ) |
| 148 |
145 146 147
|
mp2an |
⊢ - 1 < 2 |
| 149 |
22 137 148
|
ltleii |
⊢ - 1 ≤ 2 |
| 150 |
|
ovolicc |
⊢ ( ( - 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ - 1 ≤ 2 ) → ( vol* ‘ ( - 1 [,] 2 ) ) = ( 2 − - 1 ) ) |
| 151 |
22 137 149 150
|
mp3an |
⊢ ( vol* ‘ ( - 1 [,] 2 ) ) = ( 2 − - 1 ) |
| 152 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 153 |
144 151 152
|
3eqtr4i |
⊢ ( vol* ‘ ( - 1 [,] 2 ) ) = 3 |
| 154 |
141 153
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 3 ) |
| 155 |
|
xrlenlt |
⊢ ( ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ∧ 3 ∈ ℝ* ) → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 3 ↔ ¬ 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) |
| 156 |
85 35 155
|
sylancl |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 3 ↔ ¬ 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) |
| 157 |
154 156
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ¬ 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 158 |
134 157
|
pm2.65da |
⊢ ( 𝜑 → ¬ 0 < ( vol* ‘ ran 𝐹 ) ) |
| 159 |
|
ovolge0 |
⊢ ( ran 𝐹 ⊆ ℝ → 0 ≤ ( vol* ‘ ran 𝐹 ) ) |
| 160 |
20 159
|
syl |
⊢ ( 𝜑 → 0 ≤ ( vol* ‘ ran 𝐹 ) ) |
| 161 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 162 |
|
ovolcl |
⊢ ( ran 𝐹 ⊆ ℝ → ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) |
| 163 |
20 162
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) |
| 164 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) → ( 0 ≤ ( vol* ‘ ran 𝐹 ) ↔ ( 0 < ( vol* ‘ ran 𝐹 ) ∨ 0 = ( vol* ‘ ran 𝐹 ) ) ) ) |
| 165 |
161 163 164
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ ( vol* ‘ ran 𝐹 ) ↔ ( 0 < ( vol* ‘ ran 𝐹 ) ∨ 0 = ( vol* ‘ ran 𝐹 ) ) ) ) |
| 166 |
160 165
|
mpbid |
⊢ ( 𝜑 → ( 0 < ( vol* ‘ ran 𝐹 ) ∨ 0 = ( vol* ‘ ran 𝐹 ) ) ) |
| 167 |
166
|
ord |
⊢ ( 𝜑 → ( ¬ 0 < ( vol* ‘ ran 𝐹 ) → 0 = ( vol* ‘ ran 𝐹 ) ) ) |
| 168 |
158 167
|
mpd |
⊢ ( 𝜑 → 0 = ( vol* ‘ ran 𝐹 ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 = ( vol* ‘ ran 𝐹 ) ) |
| 170 |
33 169
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |