| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vitali.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } |
| 2 |
|
vitali.2 |
⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) |
| 3 |
|
vitali.3 |
⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) |
| 4 |
|
vitali.4 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 5 |
|
vitali.5 |
⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 6 |
|
vitali.6 |
⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) |
| 7 |
|
vitali.7 |
⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 8 |
|
0lt1 |
⊢ 0 < 1 |
| 9 |
|
0re |
⊢ 0 ∈ ℝ |
| 10 |
|
1re |
⊢ 1 ∈ ℝ |
| 11 |
|
0le1 |
⊢ 0 ≤ 1 |
| 12 |
|
ovolicc |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1 ) → ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) ) |
| 13 |
9 10 11 12
|
mp3an |
⊢ ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) |
| 14 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 15 |
13 14
|
eqtri |
⊢ ( vol* ‘ ( 0 [,] 1 ) ) = 1 |
| 16 |
8 15
|
breqtrri |
⊢ 0 < ( vol* ‘ ( 0 [,] 1 ) ) |
| 17 |
15 10
|
eqeltri |
⊢ ( vol* ‘ ( 0 [,] 1 ) ) ∈ ℝ |
| 18 |
9 17
|
ltnlei |
⊢ ( 0 < ( vol* ‘ ( 0 [,] 1 ) ) ↔ ¬ ( vol* ‘ ( 0 [,] 1 ) ) ≤ 0 ) |
| 19 |
16 18
|
mpbi |
⊢ ¬ ( vol* ‘ ( 0 [,] 1 ) ) ≤ 0 |
| 20 |
1 2 3 4 5 6 7
|
vitalilem2 |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |
| 21 |
20
|
simp2d |
⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 22 |
1
|
vitalilem1 |
⊢ ∼ Er ( 0 [,] 1 ) |
| 23 |
|
erdm |
⊢ ( ∼ Er ( 0 [,] 1 ) → dom ∼ = ( 0 [,] 1 ) ) |
| 24 |
22 23
|
ax-mp |
⊢ dom ∼ = ( 0 [,] 1 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) |
| 26 |
25 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ( ( 0 [,] 1 ) / ∼ ) ) |
| 27 |
|
elqsn0 |
⊢ ( ( dom ∼ = ( 0 [,] 1 ) ∧ 𝑧 ∈ ( ( 0 [,] 1 ) / ∼ ) ) → 𝑧 ≠ ∅ ) |
| 28 |
24 26 27
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ≠ ∅ ) |
| 29 |
22
|
a1i |
⊢ ( 𝜑 → ∼ Er ( 0 [,] 1 ) ) |
| 30 |
29
|
qsss |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) / ∼ ) ⊆ 𝒫 ( 0 [,] 1 ) ) |
| 31 |
2 30
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ 𝒫 ( 0 [,] 1 ) ) |
| 32 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝒫 ( 0 [,] 1 ) ) |
| 33 |
32
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ⊆ ( 0 [,] 1 ) ) |
| 34 |
33
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 35 |
28 34
|
embantd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 36 |
35
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 37 |
4 36
|
mpd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 38 |
|
ffnfv |
⊢ ( 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ↔ ( 𝐹 Fn 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 39 |
3 37 38
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ) |
| 40 |
39
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 41 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 42 |
40 41
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 43 |
|
reex |
⊢ ℝ ∈ V |
| 44 |
43
|
elpw2 |
⊢ ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ ) |
| 45 |
42 44
|
sylibr |
⊢ ( 𝜑 → ran 𝐹 ∈ 𝒫 ℝ ) |
| 46 |
45
|
anim1i |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) |
| 47 |
|
eldif |
⊢ ( ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ↔ ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 49 |
48
|
ex |
⊢ ( 𝜑 → ( ¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) |
| 50 |
7 49
|
mt3d |
⊢ ( 𝜑 → ran 𝐹 ∈ dom vol ) |
| 51 |
|
f1of |
⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 52 |
5 51
|
syl |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 53 |
|
inss1 |
⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ |
| 54 |
|
qssre |
⊢ ℚ ⊆ ℝ |
| 55 |
53 54
|
sstri |
⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ |
| 56 |
|
fss |
⊢ ( ( 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ ) → 𝐺 : ℕ ⟶ ℝ ) |
| 57 |
52 55 56
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℝ ) |
| 58 |
57
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 59 |
|
shftmbl |
⊢ ( ( ran 𝐹 ∈ dom vol ∧ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) |
| 60 |
50 58 59
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) |
| 61 |
60 6
|
fmptd |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ dom vol ) |
| 62 |
61
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 63 |
62
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 64 |
|
iunmbl |
⊢ ( ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 66 |
|
mblss |
⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) |
| 67 |
65 66
|
syl |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) |
| 68 |
|
ovolss |
⊢ ( ( ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) → ( vol* ‘ ( 0 [,] 1 ) ) ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 69 |
21 67 68
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 0 [,] 1 ) ) ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 70 |
|
eqid |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) |
| 71 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) |
| 72 |
|
mblss |
⊢ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) |
| 73 |
62 72
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) |
| 74 |
1 2 3 4 5 6 7
|
vitalilem4 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |
| 75 |
74 9
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) |
| 76 |
74
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) ) |
| 77 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) |
| 78 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 79 |
78
|
xpeq1i |
⊢ ( ℕ × { 0 } ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
| 80 |
77 79
|
eqtr3i |
⊢ ( 𝑚 ∈ ℕ ↦ 0 ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
| 81 |
76 80
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) |
| 82 |
81
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) |
| 83 |
|
1z |
⊢ 1 ∈ ℤ |
| 84 |
|
serclim0 |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) |
| 85 |
83 84
|
ax-mp |
⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 |
| 86 |
82 85
|
eqbrtrdi |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⇝ 0 ) |
| 87 |
|
seqex |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ V |
| 88 |
|
c0ex |
⊢ 0 ∈ V |
| 89 |
87 88
|
breldm |
⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⇝ 0 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 90 |
86 89
|
syl |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 91 |
70 71 73 75 90
|
ovoliun2 |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) |
| 92 |
74
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = Σ 𝑚 ∈ ℕ 0 ) |
| 93 |
78
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
| 94 |
93
|
orci |
⊢ ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) |
| 95 |
|
sumz |
⊢ ( ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) → Σ 𝑚 ∈ ℕ 0 = 0 ) |
| 96 |
94 95
|
ax-mp |
⊢ Σ 𝑚 ∈ ℕ 0 = 0 |
| 97 |
92 96
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |
| 98 |
91 97
|
breqtrd |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 0 ) |
| 99 |
|
ovolge0 |
⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 100 |
67 99
|
syl |
⊢ ( 𝜑 → 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 101 |
|
ovolcl |
⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 102 |
67 101
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 103 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 104 |
|
xrletri3 |
⊢ ( ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = 0 ↔ ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 105 |
102 103 104
|
sylancl |
⊢ ( 𝜑 → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = 0 ↔ ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 106 |
98 100 105
|
mpbir2and |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |
| 107 |
69 106
|
breqtrd |
⊢ ( 𝜑 → ( vol* ‘ ( 0 [,] 1 ) ) ≤ 0 ) |
| 108 |
19 107
|
mto |
⊢ ¬ 𝜑 |