Metamath Proof Explorer


Theorem vjust

Description: Justification theorem for df-v . (Contributed by Rodolfo Medina, 27-Apr-2010)

Ref Expression
Assertion vjust { 𝑥𝑥 = 𝑥 } = { 𝑦𝑦 = 𝑦 }

Proof

Step Hyp Ref Expression
1 equid 𝑥 = 𝑥
2 1 vexw 𝑧 ∈ { 𝑥𝑥 = 𝑥 }
3 equid 𝑦 = 𝑦
4 3 vexw 𝑧 ∈ { 𝑦𝑦 = 𝑦 }
5 2 4 2th ( 𝑧 ∈ { 𝑥𝑥 = 𝑥 } ↔ 𝑧 ∈ { 𝑦𝑦 = 𝑦 } )
6 5 eqriv { 𝑥𝑥 = 𝑥 } = { 𝑦𝑦 = 𝑦 }