Metamath Proof Explorer
Description: Justification theorem for df-v . (Contributed by Rodolfo Medina, 27-Apr-2010)
|
|
Ref |
Expression |
|
Assertion |
vjust |
⊢ { 𝑥 ∣ 𝑥 = 𝑥 } = { 𝑦 ∣ 𝑦 = 𝑦 } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
equid |
⊢ 𝑥 = 𝑥 |
2 |
1
|
vexw |
⊢ 𝑧 ∈ { 𝑥 ∣ 𝑥 = 𝑥 } |
3 |
|
equid |
⊢ 𝑦 = 𝑦 |
4 |
3
|
vexw |
⊢ 𝑧 ∈ { 𝑦 ∣ 𝑦 = 𝑦 } |
5 |
2 4
|
2th |
⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝑥 = 𝑥 } ↔ 𝑧 ∈ { 𝑦 ∣ 𝑦 = 𝑦 } ) |
6 |
5
|
eqriv |
⊢ { 𝑥 ∣ 𝑥 = 𝑥 } = { 𝑦 ∣ 𝑦 = 𝑦 } |