Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
2 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
4 |
|
eluz2b2 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
5 |
3 4
|
sylib |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
6 |
5
|
simpld |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
7 |
6
|
nnred |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℝ ) |
8 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
10 |
7 9
|
reexpcld |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ ) |
11 |
5
|
simprd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 < 𝑝 ) |
12 |
6
|
nncnd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℂ ) |
13 |
12
|
exp1d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 1 ) = 𝑝 ) |
14 |
6
|
nnge1d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑝 ) |
15 |
|
simpr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
17 |
15 16
|
eleqtrdi |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
18 |
7 14 17
|
leexp2ad |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 1 ) ≤ ( 𝑝 ↑ 𝑘 ) ) |
19 |
13 18
|
eqbrtrrd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ) |
20 |
1 7 10 11 19
|
ltletrd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 < ( 𝑝 ↑ 𝑘 ) ) |
21 |
1 20
|
ltned |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ≠ ( 𝑝 ↑ 𝑘 ) ) |
22 |
21
|
neneqd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ¬ 1 = ( 𝑝 ↑ 𝑘 ) ) |
23 |
22
|
nrexdv |
⊢ ( 𝑝 ∈ ℙ → ¬ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝 ↑ 𝑘 ) ) |
24 |
23
|
nrex |
⊢ ¬ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝 ↑ 𝑘 ) |
25 |
|
1nn |
⊢ 1 ∈ ℕ |
26 |
|
isppw2 |
⊢ ( 1 ∈ ℕ → ( ( Λ ‘ 1 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝 ↑ 𝑘 ) ) ) |
27 |
25 26
|
ax-mp |
⊢ ( ( Λ ‘ 1 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝 ↑ 𝑘 ) ) |
28 |
27
|
necon1bbii |
⊢ ( ¬ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝 ↑ 𝑘 ) ↔ ( Λ ‘ 1 ) = 0 ) |
29 |
24 28
|
mpbi |
⊢ ( Λ ‘ 1 ) = 0 |