Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( ( Λ ‘ 𝐴 ) ∈ ℝ ↔ 0 ∈ ℝ ) ) |
2 |
|
isppw2 |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
3 |
|
vmappw |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
4 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
5 |
4
|
nnrpd |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ+ ) |
6 |
5
|
relogcld |
⊢ ( 𝑝 ∈ ℙ → ( log ‘ 𝑝 ) ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
8 |
3 7
|
eqeltrd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
9 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ( Λ ‘ 𝐴 ) ∈ ℝ ↔ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) ) |
11 |
8 10
|
syl5ibrcom |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) ∈ ℝ ) ) |
12 |
11
|
rexlimivv |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) ∈ ℝ ) |
13 |
2 12
|
syl6bi |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 → ( Λ ‘ 𝐴 ) ∈ ℝ ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( Λ ‘ 𝐴 ) ≠ 0 ) → ( Λ ‘ 𝐴 ) ∈ ℝ ) |
15 |
|
0red |
⊢ ( 𝐴 ∈ ℕ → 0 ∈ ℝ ) |
16 |
1 14 15
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) ∈ ℝ ) |