Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
⊢ ℝ ∈ V |
2 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
3 |
1 2
|
ssexi |
⊢ ℝ+ ∈ V |
4 |
3
|
a1i |
⊢ ( ⊤ → ℝ+ ∈ V ) |
5 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ V ) |
6 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ V ) |
7 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) |
8 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) |
9 |
4 5 6 7 8
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) − ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) ) |
10 |
9
|
mptru |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) − ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) |
11 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
12 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
13 |
12
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
14 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
16 |
15 13
|
nndivred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
17 |
11 16
|
fsumrecl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
18 |
17
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
19 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℂ ) |
21 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
22 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
23 |
|
faccl |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ∈ ℕ ) |
24 |
21 22 23
|
3syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ∈ ℕ ) |
25 |
24
|
nnrpd |
⊢ ( 𝑥 ∈ ℝ+ → ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ∈ ℝ+ ) |
26 |
25
|
relogcld |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ∈ ℝ ) |
27 |
|
rerpdivcl |
⊢ ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ∈ ℝ ) |
28 |
26 27
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ∈ ℂ ) |
30 |
18 20 29
|
nnncan2d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) − ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) |
31 |
30
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) − ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) |
32 |
10 31
|
eqtri |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) |
33 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
34 |
|
chpo1ub |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |
35 |
34
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
36 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
37 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
38 |
36 37
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
39 |
|
rerpdivcl |
⊢ ( ( ( ψ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
40 |
38 39
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
41 |
40
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
42 |
41
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
43 |
18 29
|
subcld |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ ℂ ) |
44 |
43
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ ℂ ) |
45 |
36
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
46 |
16 45
|
remulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) ∈ ℝ ) |
47 |
|
nndivre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
48 |
36 12 47
|
syl2an |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
49 |
|
reflcl |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
50 |
48 49
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
51 |
15 50
|
remulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
52 |
46 51
|
resubcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
53 |
48 50
|
resubcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
54 |
|
1red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
55 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
56 |
13 55
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
57 |
|
fracle1 |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ≤ 1 ) |
58 |
48 57
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ≤ 1 ) |
59 |
53 54 15 56 58
|
lemul2ad |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ ( ( Λ ‘ 𝑛 ) · 1 ) ) |
60 |
15
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
61 |
48
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℂ ) |
62 |
50
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
63 |
60 61 62
|
subdid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( 𝑥 / 𝑛 ) ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
64 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
65 |
64
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℂ ) |
66 |
13
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
67 |
|
rpcnne0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
68 |
66 67
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
69 |
|
div23 |
⊢ ( ( ( Λ ‘ 𝑛 ) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( ( Λ ‘ 𝑛 ) · 𝑥 ) / 𝑛 ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) ) |
70 |
|
divass |
⊢ ( ( ( Λ ‘ 𝑛 ) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( ( Λ ‘ 𝑛 ) · 𝑥 ) / 𝑛 ) = ( ( Λ ‘ 𝑛 ) · ( 𝑥 / 𝑛 ) ) ) |
71 |
69 70
|
eqtr3d |
⊢ ( ( ( Λ ‘ 𝑛 ) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) = ( ( Λ ‘ 𝑛 ) · ( 𝑥 / 𝑛 ) ) ) |
72 |
60 65 68 71
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) = ( ( Λ ‘ 𝑛 ) · ( 𝑥 / 𝑛 ) ) ) |
73 |
72
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( 𝑥 / 𝑛 ) ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
74 |
63 73
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
75 |
60
|
mulid1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · 1 ) = ( Λ ‘ 𝑛 ) ) |
76 |
59 74 75
|
3brtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ ( Λ ‘ 𝑛 ) ) |
77 |
11 52 15 76
|
fsumle |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) ) |
78 |
16
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
79 |
11 64 78
|
fsummulc1 |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) ) |
80 |
|
logfac2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
81 |
21 80
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
82 |
79 81
|
oveq12d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
83 |
46
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) ∈ ℂ ) |
84 |
51
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
85 |
11 83 84
|
fsumsub |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
86 |
82 85
|
eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
87 |
|
chpval |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) ) |
88 |
36 87
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) ) |
89 |
77 86 88
|
3brtr4d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ≤ ( ψ ‘ 𝑥 ) ) |
90 |
17 36
|
remulcld |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) ∈ ℝ ) |
91 |
90 26
|
resubcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
92 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
93 |
|
lediv1 |
⊢ ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ∈ ℝ ∧ ( ψ ‘ 𝑥 ) ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ≤ ( ψ ‘ 𝑥 ) ↔ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
94 |
91 38 92 93
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ≤ ( ψ ‘ 𝑥 ) ↔ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
95 |
89 94
|
mpbid |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
96 |
90
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) ∈ ℂ ) |
97 |
26
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ∈ ℂ ) |
98 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
99 |
|
divsubdir |
⊢ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) ∈ ℂ ∧ ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) / 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) |
100 |
96 97 98 99
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) / 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) |
101 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
102 |
18 64 101
|
divcan4d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
103 |
102
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) / 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) |
104 |
100 103
|
eqtr2d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ) |
105 |
104
|
fveq2d |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ) ) |
106 |
|
rerpdivcl |
⊢ ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
107 |
91 106
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
108 |
|
flle |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ≤ ( 𝑥 / 𝑛 ) ) |
109 |
48 108
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ≤ ( 𝑥 / 𝑛 ) ) |
110 |
48 50
|
subge0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 0 ≤ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ↔ ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ≤ ( 𝑥 / 𝑛 ) ) ) |
111 |
109 110
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
112 |
15 53 56 111
|
mulge0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( Λ ‘ 𝑛 ) · ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
113 |
112 74
|
breqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
114 |
11 52 113
|
fsumge0 |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( ( Λ ‘ 𝑛 ) · ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
115 |
114 86
|
breqtrrd |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) |
116 |
|
divge0 |
⊢ ( ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → 0 ≤ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ) |
117 |
91 115 92 116
|
syl21anc |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ) |
118 |
107 117
|
absidd |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ) |
119 |
105 118
|
eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝑥 ) − ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) ) / 𝑥 ) ) |
120 |
|
chpge0 |
⊢ ( 𝑥 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑥 ) ) |
121 |
36 120
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ ( ψ ‘ 𝑥 ) ) |
122 |
|
divge0 |
⊢ ( ( ( ( ψ ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ψ ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → 0 ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
123 |
38 121 92 122
|
syl21anc |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
124 |
40 123
|
absidd |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) = ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
125 |
95 119 124
|
3brtr4d |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ≤ ( abs ‘ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
126 |
125
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ≤ ( abs ‘ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
127 |
33 35 42 44 126
|
o1le |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1) ) |
128 |
127
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1) |
129 |
|
logfacrlim |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ⇝𝑟 1 |
130 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ⇝𝑟 1 → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1) ) |
131 |
129 130
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1) |
132 |
|
o1sub |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
133 |
128 131 132
|
mp2an |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ) ∈ 𝑂(1) |
134 |
32 133
|
eqeltrri |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) |