| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex | ⊢ ( log ‘ ∪  𝑠 )  ∈  V | 
						
							| 2 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 3 | 1 2 | ifex | ⊢ if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 )  ∈  V | 
						
							| 4 | 3 | csbex | ⊢ ⦋ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  /  𝑠 ⦌ if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 )  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℕ )  →  ⦋ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  /  𝑠 ⦌ if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 )  ∈  V ) | 
						
							| 6 |  | df-vma | ⊢ Λ  =  ( 𝑥  ∈  ℕ  ↦  ⦋ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  /  𝑠 ⦌ if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( ⊤  →  Λ  =  ( 𝑥  ∈  ℕ  ↦  ⦋ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  /  𝑠 ⦌ if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 ) ) ) | 
						
							| 8 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 10 | 5 7 9 | fmpt2d | ⊢ ( ⊤  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 11 | 10 | mptru | ⊢ Λ : ℕ ⟶ ℝ |