Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( log ‘ ∪ 𝑠 ) ∈ V |
2 |
|
c0ex |
⊢ 0 ∈ V |
3 |
1 2
|
ifex |
⊢ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ∈ V |
4 |
3
|
csbex |
⊢ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ∈ V |
5 |
4
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℕ ) → ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ∈ V ) |
6 |
|
df-vma |
⊢ Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) |
7 |
6
|
a1i |
⊢ ( ⊤ → Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) ) |
8 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
9 |
8
|
adantl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
10 |
5 7 9
|
fmpt2d |
⊢ ( ⊤ → Λ : ℕ ⟶ ℝ ) |
11 |
10
|
mptru |
⊢ Λ : ℕ ⟶ ℝ |