Metamath Proof Explorer


Theorem vmaf

Description: Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion vmaf Λ : ℕ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 fvex ( log ‘ 𝑠 ) ∈ V
2 c0ex 0 ∈ V
3 1 2 ifex if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) ∈ V
4 3 csbex { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) ∈ V
5 4 a1i ( ( ⊤ ∧ 𝑥 ∈ ℕ ) → { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) ∈ V )
6 df-vma Λ = ( 𝑥 ∈ ℕ ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) )
7 6 a1i ( ⊤ → Λ = ( 𝑥 ∈ ℕ ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) ) )
8 vmacl ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ )
9 8 adantl ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( Λ ‘ 𝑛 ) ∈ ℝ )
10 5 7 9 fmpt2d ( ⊤ → Λ : ℕ ⟶ ℝ )
11 10 mptru Λ : ℕ ⟶ ℝ