Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( ( Λ ‘ 𝐴 ) ≤ ( log ‘ 𝐴 ) ↔ 0 ≤ ( log ‘ 𝐴 ) ) ) |
2 |
|
isppw2 |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
3 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
4 |
3
|
nnrpd |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ+ ) |
5 |
4
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℝ+ ) |
6 |
5
|
relogcld |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
7 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
8 |
7
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
9 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
10 |
3
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
11 |
10
|
nnge1d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑝 ) |
12 |
|
1rp |
⊢ 1 ∈ ℝ+ |
13 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑝 ∈ ℝ+ ) → ( 1 ≤ 𝑝 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑝 ) ) ) |
14 |
12 5 13
|
sylancr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ 𝑝 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑝 ) ) ) |
15 |
11 14
|
mpbid |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( log ‘ 1 ) ≤ ( log ‘ 𝑝 ) ) |
16 |
9 15
|
eqbrtrrid |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( log ‘ 𝑝 ) ) |
17 |
|
nnge1 |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) |
18 |
17
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑘 ) |
19 |
6 8 16 18
|
lemulge12d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑝 ) ≤ ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
20 |
|
vmappw |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
21 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
22 |
|
relogexp |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
23 |
4 21 22
|
syl2an |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
24 |
19 20 23
|
3brtr4d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( log ‘ 𝐴 ) = ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
27 |
25 26
|
breq12d |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ( Λ ‘ 𝐴 ) ≤ ( log ‘ 𝐴 ) ↔ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ) ) |
28 |
24 27
|
syl5ibrcom |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) ≤ ( log ‘ 𝐴 ) ) ) |
29 |
28
|
rexlimivv |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) ≤ ( log ‘ 𝐴 ) ) |
30 |
2 29
|
syl6bi |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 → ( Λ ‘ 𝐴 ) ≤ ( log ‘ 𝐴 ) ) ) |
31 |
30
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( Λ ‘ 𝐴 ) ≠ 0 ) → ( Λ ‘ 𝐴 ) ≤ ( log ‘ 𝐴 ) ) |
32 |
|
nnge1 |
⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |
33 |
|
nnrp |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ+ ) |
34 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 1 ≤ 𝐴 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝐴 ) ) ) |
35 |
12 33 34
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → ( 1 ≤ 𝐴 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝐴 ) ) ) |
36 |
32 35
|
mpbid |
⊢ ( 𝐴 ∈ ℕ → ( log ‘ 1 ) ≤ ( log ‘ 𝐴 ) ) |
37 |
9 36
|
eqbrtrrid |
⊢ ( 𝐴 ∈ ℕ → 0 ≤ ( log ‘ 𝐴 ) ) |
38 |
1 31 37
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) ≤ ( log ‘ 𝐴 ) ) |