| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) |
| 2 |
1
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 3 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 4 |
3
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ ) |
| 5 |
|
1red |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) |
| 6 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 8 |
7
|
simpld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 ) |
| 9 |
5 2 8
|
ltled |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 10 |
2 4 9
|
rpgecld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
| 11 |
10
|
ex |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ+ ) ) |
| 12 |
11
|
ssrdv |
⊢ ( ⊤ → ( 1 (,) +∞ ) ⊆ ℝ+ ) |
| 13 |
|
vmadivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
| 14 |
13
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 15 |
12 14
|
o1res2 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 16 |
|
fzfid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 17 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 18 |
17
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 19 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 21 |
20 18
|
nndivred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 22 |
21
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 23 |
16 22
|
fsumcl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 24 |
10
|
relogcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 25 |
24
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 26 |
23 25
|
subcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 27 |
18
|
nnrpd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 28 |
27
|
relogcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 29 |
21 28
|
remulcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 30 |
16 29
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 31 |
2 8
|
rplogcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 32 |
30 31
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 33 |
24
|
rehalfcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℝ ) |
| 34 |
32 33
|
resubcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℂ ) |
| 36 |
33
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℂ ) |
| 37 |
23 36
|
subcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℂ ) |
| 38 |
32
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 39 |
37 38 36
|
nnncan2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) ) |
| 40 |
23 36 36
|
subsub4d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( ( log ‘ 𝑥 ) / 2 ) + ( ( log ‘ 𝑥 ) / 2 ) ) ) ) |
| 41 |
25
|
2halvesd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( log ‘ 𝑥 ) / 2 ) + ( ( log ‘ 𝑥 ) / 2 ) ) = ( log ‘ 𝑥 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( ( log ‘ 𝑥 ) / 2 ) + ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) |
| 43 |
40 42
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) |
| 44 |
43
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) |
| 45 |
23 36 38
|
sub32d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) |
| 46 |
10
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 47 |
46
|
relogcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 48 |
21 47
|
remulcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 50 |
29
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 51 |
16 49 50
|
fsumsub |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 52 |
46 27
|
relogdivd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) = ( ( log ‘ 𝑥 ) − ( log ‘ 𝑛 ) ) ) |
| 53 |
52
|
oveq2d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( ( log ‘ 𝑥 ) − ( log ‘ 𝑛 ) ) ) ) |
| 54 |
25
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 55 |
28
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
| 56 |
22 54 55
|
subdid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( ( log ‘ 𝑥 ) − ( log ‘ 𝑛 ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 57 |
53 56
|
eqtrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 58 |
57
|
sumeq2dv |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 59 |
20
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 60 |
18
|
nncnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 61 |
18
|
nnne0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
| 62 |
59 60 61
|
divcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 63 |
16 25 62
|
fsummulc1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) ) |
| 64 |
63
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 65 |
51 58 64
|
3eqtr4d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 66 |
65
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) |
| 67 |
23 25
|
mulcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 68 |
30
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 69 |
31
|
rpne0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ≠ 0 ) |
| 70 |
67 68 25 69
|
divsubdird |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) ) |
| 71 |
23 25 69
|
divcan4d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
| 72 |
71
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) ) |
| 73 |
66 70 72
|
3eqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) |
| 75 |
45 74
|
eqtr4d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( ( log ‘ 𝑥 ) / 2 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) |
| 76 |
39 44 75
|
3eqtr3d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) |
| 77 |
76
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) |
| 78 |
|
vmalogdivsum2 |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) |
| 79 |
77 78
|
eqeltrdi |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) ∈ 𝑂(1) ) |
| 80 |
26 35 79
|
o1dif |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ) ) |
| 81 |
15 80
|
mpbid |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ) |
| 82 |
81
|
mptru |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) |