Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
2 |
|
nnnn0 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) |
3 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
5 |
|
eqid |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } |
6 |
5
|
vmaval |
⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) ) |
7 |
4 6
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) ) |
8 |
|
df-rab |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑝 ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) } |
9 |
|
prmdvdsexpb |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ↔ 𝑝 = 𝑃 ) ) |
10 |
9
|
biimpd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
11 |
10
|
3coml |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
12 |
11
|
3expa |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
13 |
12
|
expimpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) → 𝑝 = 𝑃 ) ) |
14 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
15 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
16 |
|
iddvdsexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) |
17 |
15 16
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) |
18 |
14 17
|
jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) |
19 |
|
eleq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ ) ) |
20 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ↔ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) |
21 |
19 20
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) ) |
22 |
18 21
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 = 𝑃 → ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ) ) |
23 |
13 22
|
impbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ 𝑝 = 𝑃 ) ) |
24 |
|
velsn |
⊢ ( 𝑝 ∈ { 𝑃 } ↔ 𝑝 = 𝑃 ) |
25 |
23 24
|
bitr4di |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ 𝑝 ∈ { 𝑃 } ) ) |
26 |
25
|
abbi1dv |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑝 ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) } = { 𝑃 } ) |
27 |
8 26
|
syl5eq |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑃 } ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = ( ♯ ‘ { 𝑃 } ) ) |
29 |
|
hashsng |
⊢ ( 𝑃 ∈ ℙ → ( ♯ ‘ { 𝑃 } ) = 1 ) |
30 |
29
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑃 } ) = 1 ) |
31 |
28 30
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 ) |
32 |
31
|
iftrued |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) = ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
33 |
27
|
unieqd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = ∪ { 𝑃 } ) |
34 |
|
unisng |
⊢ ( 𝑃 ∈ ℙ → ∪ { 𝑃 } = 𝑃 ) |
35 |
34
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑃 } = 𝑃 ) |
36 |
33 35
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = 𝑃 ) |
37 |
36
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = ( log ‘ 𝑃 ) ) |
38 |
7 32 37
|
3eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( log ‘ 𝑃 ) ) |