Metamath Proof Explorer


Theorem vmaprm

Description: Value of the von Mangoldt function at a prime. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion vmaprm ( 𝑃 ∈ ℙ → ( Λ ‘ 𝑃 ) = ( log ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
2 1 nncnd ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ )
3 2 exp1d ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 )
4 3 fveq2d ( 𝑃 ∈ ℙ → ( Λ ‘ ( 𝑃 ↑ 1 ) ) = ( Λ ‘ 𝑃 ) )
5 1nn 1 ∈ ℕ
6 vmappw ( ( 𝑃 ∈ ℙ ∧ 1 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 1 ) ) = ( log ‘ 𝑃 ) )
7 5 6 mpan2 ( 𝑃 ∈ ℙ → ( Λ ‘ ( 𝑃 ↑ 1 ) ) = ( log ‘ 𝑃 ) )
8 4 7 eqtr3d ( 𝑃 ∈ ℙ → ( Λ ‘ 𝑃 ) = ( log ‘ 𝑃 ) )