Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
2 |
|
fzfid |
⊢ ( 𝐴 ∈ ℕ → ( 1 ... 𝐴 ) ∈ Fin ) |
3 |
|
dvdsssfz1 |
⊢ ( 𝐴 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
4 |
2 3
|
ssfid |
⊢ ( 𝐴 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ∈ Fin ) |
5 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ⊆ ℕ |
6 |
5
|
a1i |
⊢ ( 𝐴 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ⊆ ℕ ) |
7 |
|
inss1 |
⊢ ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) |
8 |
|
ssfi |
⊢ ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) ) → ( ( 1 ... 𝐴 ) ∩ ℙ ) ∈ Fin ) |
9 |
2 7 8
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → ( ( 1 ... 𝐴 ) ∩ ℙ ) ∈ Fin ) |
10 |
|
pccl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
12 |
11
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
13 |
|
fznn |
⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℤ → ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
15 |
14
|
anbi2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
16 |
|
an12 |
⊢ ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
17 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
19 |
|
iddvdsexp |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ) |
20 |
18 19
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ) |
21 |
17
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℤ ) |
22 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
24 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
25 |
|
nnexpcl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
26 |
23 24 25
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
27 |
26
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) |
28 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
30 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) → 𝑝 ∥ 𝐴 ) ) |
31 |
21 27 29 30
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) → 𝑝 ∥ 𝐴 ) ) |
32 |
20 31
|
mpand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 → 𝑝 ∥ 𝐴 ) ) |
33 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℕ ) |
34 |
|
dvdsle |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
35 |
21 33 34
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
36 |
32 35
|
syld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
37 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
38 |
|
fznn |
⊢ ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
39 |
38
|
baibd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
40 |
29 37 39
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
41 |
36 40
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
42 |
41
|
pm4.71rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) ) |
43 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) → ( 𝑥 ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
44 |
43
|
elrab3 |
⊢ ( ( 𝑝 ↑ 𝑘 ) ∈ ℕ → ( ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
45 |
26 44
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
46 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℙ ) |
47 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
48 |
|
pcdvdsb |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
49 |
46 29 47 48
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
50 |
49
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) ) |
51 |
42 45 50
|
3bitr4rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) |
52 |
51
|
pm5.32da |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑘 ∈ ℕ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
53 |
16 52
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
54 |
15 53
|
bitrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
55 |
54
|
pm5.32da |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) ) |
56 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ) |
57 |
56
|
anbi1i |
⊢ ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) |
58 |
|
anass |
⊢ ( ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
59 |
|
an12 |
⊢ ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
60 |
57 58 59
|
3bitri |
⊢ ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
61 |
|
anass |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
62 |
55 60 61
|
3bitr4g |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
63 |
6
|
sselda |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) → 𝑛 ∈ ℕ ) |
64 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
65 |
63 64
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
66 |
65
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
67 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( Λ ‘ 𝑛 ) = 0 ) |
68 |
1 4 6 9 62 66 67
|
fsumvma |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ( Λ ‘ 𝑛 ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
69 |
|
elinel2 |
⊢ ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℙ ) |
70 |
69
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → 𝑝 ∈ ℙ ) |
71 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) → 𝑘 ∈ ℕ ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → 𝑘 ∈ ℕ ) |
73 |
|
vmappw |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
74 |
70 72 73
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
75 |
74
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) ) |
76 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ∈ Fin ) |
77 |
69 22
|
syl |
⊢ ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℕ ) |
78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
79 |
78
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
80 |
79
|
relogcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
81 |
80
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
82 |
|
fsumconst |
⊢ ( ( ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ∈ Fin ∧ ( log ‘ 𝑝 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) ) |
83 |
76 81 82
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) ) |
84 |
69 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
85 |
|
hashfz1 |
⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) |
86 |
84 85
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) |
87 |
86
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
88 |
75 83 87
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
89 |
88
|
sumeq2dv |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
90 |
|
pclogsum |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) = ( log ‘ 𝐴 ) ) |
91 |
68 89 90
|
3eqtrd |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ( Λ ‘ 𝑛 ) = ( log ‘ 𝐴 ) ) |