| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vmaval.1 | ⊢ 𝑆  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } | 
						
							| 2 |  | prmex | ⊢ ℙ  ∈  V | 
						
							| 3 | 2 | rabex | ⊢ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  ∈  V | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑥  =  𝐴  →  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  ∈  V ) | 
						
							| 5 |  | id | ⊢ ( 𝑠  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  →  𝑠  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 } ) | 
						
							| 6 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑝  ∥  𝑥  ↔  𝑝  ∥  𝐴 ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( 𝑥  =  𝐴  →  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝐴 } ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( 𝑥  =  𝐴  →  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  =  𝑆 ) | 
						
							| 9 | 5 8 | sylan9eqr | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑠  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 } )  →  𝑠  =  𝑆 ) | 
						
							| 10 | 9 | fveqeq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑠  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 } )  →  ( ( ♯ ‘ 𝑠 )  =  1  ↔  ( ♯ ‘ 𝑆 )  =  1 ) ) | 
						
							| 11 | 9 | unieqd | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑠  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 } )  →  ∪  𝑠  =  ∪  𝑆 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑠  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 } )  →  ( log ‘ ∪  𝑠 )  =  ( log ‘ ∪  𝑆 ) ) | 
						
							| 13 | 10 12 | ifbieq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑠  =  { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 } )  →  if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 )  =  if ( ( ♯ ‘ 𝑆 )  =  1 ,  ( log ‘ ∪  𝑆 ) ,  0 ) ) | 
						
							| 14 | 4 13 | csbied | ⊢ ( 𝑥  =  𝐴  →  ⦋ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  /  𝑠 ⦌ if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 )  =  if ( ( ♯ ‘ 𝑆 )  =  1 ,  ( log ‘ ∪  𝑆 ) ,  0 ) ) | 
						
							| 15 |  | df-vma | ⊢ Λ  =  ( 𝑥  ∈  ℕ  ↦  ⦋ { 𝑝  ∈  ℙ  ∣  𝑝  ∥  𝑥 }  /  𝑠 ⦌ if ( ( ♯ ‘ 𝑠 )  =  1 ,  ( log ‘ ∪  𝑠 ) ,  0 ) ) | 
						
							| 16 |  | fvex | ⊢ ( log ‘ ∪  𝑆 )  ∈  V | 
						
							| 17 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 18 | 16 17 | ifex | ⊢ if ( ( ♯ ‘ 𝑆 )  =  1 ,  ( log ‘ ∪  𝑆 ) ,  0 )  ∈  V | 
						
							| 19 | 14 15 18 | fvmpt | ⊢ ( 𝐴  ∈  ℕ  →  ( Λ ‘ 𝐴 )  =  if ( ( ♯ ‘ 𝑆 )  =  1 ,  ( log ‘ ∪  𝑆 ) ,  0 ) ) |