Step |
Hyp |
Ref |
Expression |
1 |
|
vmaval.1 |
⊢ 𝑆 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } |
2 |
|
prmex |
⊢ ℙ ∈ V |
3 |
2
|
rabex |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ V |
4 |
3
|
a1i |
⊢ ( 𝑥 = 𝐴 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ V ) |
5 |
|
id |
⊢ ( 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } → 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) |
6 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴 ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑥 = 𝐴 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } = 𝑆 ) |
9 |
5 8
|
sylan9eqr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → 𝑠 = 𝑆 ) |
10 |
9
|
fveqeq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → ( ( ♯ ‘ 𝑠 ) = 1 ↔ ( ♯ ‘ 𝑆 ) = 1 ) ) |
11 |
9
|
unieqd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → ∪ 𝑠 = ∪ 𝑆 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → ( log ‘ ∪ 𝑠 ) = ( log ‘ ∪ 𝑆 ) ) |
13 |
10 12
|
ifbieq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) = if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ) |
14 |
4 13
|
csbied |
⊢ ( 𝑥 = 𝐴 → ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) = if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ) |
15 |
|
df-vma |
⊢ Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) |
16 |
|
fvex |
⊢ ( log ‘ ∪ 𝑆 ) ∈ V |
17 |
|
c0ex |
⊢ 0 ∈ V |
18 |
16 17
|
ifex |
⊢ if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ∈ V |
19 |
14 15 18
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) = if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ) |