| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vmcn.c |
⊢ 𝐶 = ( IndMet ‘ 𝑈 ) |
| 2 |
|
vmcn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
| 3 |
|
vmcn.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 4 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
| 5 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 6 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 7 |
4 5 6 3
|
nvmfval |
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ) |
| 8 |
4 1
|
imsxmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐶 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 9 |
2
|
mopntopon |
⊢ ( 𝐶 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑈 ∈ NrmCVec → 𝐽 ∈ ( TopOn ‘ ( BaseSet ‘ 𝑈 ) ) ) |
| 11 |
10 10
|
cnmpt1st |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 12 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 13 |
12
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 14 |
13
|
a1i |
⊢ ( 𝑈 ∈ NrmCVec → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 15 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 16 |
15
|
a1i |
⊢ ( 𝑈 ∈ NrmCVec → - 1 ∈ ℂ ) |
| 17 |
10 10 14 16
|
cnmpt2c |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ - 1 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 |
10 10
|
cnmpt2nd |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 19 |
1 2 6 12
|
smcn |
⊢ ( 𝑈 ∈ NrmCVec → ( ·𝑠OLD ‘ 𝑈 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t 𝐽 ) Cn 𝐽 ) ) |
| 20 |
10 10 17 18 19
|
cnmpt22f |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 21 |
1 2 5
|
vacn |
⊢ ( 𝑈 ∈ NrmCVec → ( +𝑣 ‘ 𝑈 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 22 |
10 10 11 20 21
|
cnmpt22f |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ ( BaseSet ‘ 𝑈 ) , 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 23 |
7 22
|
eqeltrd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |