| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fal |
⊢ ¬ ⊥ |
| 2 |
|
pm5.501 |
⊢ ( ⊤ → ( ⊥ ↔ ( ⊤ ↔ ⊥ ) ) ) |
| 3 |
2
|
mptru |
⊢ ( ⊥ ↔ ( ⊤ ↔ ⊥ ) ) |
| 4 |
1 3
|
mtbi |
⊢ ¬ ( ⊤ ↔ ⊥ ) |
| 5 |
4
|
exgen |
⊢ ∃ 𝑦 ¬ ( ⊤ ↔ ⊥ ) |
| 6 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ( ⊤ ↔ ⊥ ) ↔ ¬ ∀ 𝑦 ( ⊤ ↔ ⊥ ) ) |
| 7 |
5 6
|
mpbi |
⊢ ¬ ∀ 𝑦 ( ⊤ ↔ ⊥ ) |
| 8 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ [ 𝑦 / 𝑥 ] ⊤ ) |
| 9 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] ⊤ ↔ ⊤ ) |
| 10 |
8 9
|
bitr2i |
⊢ ( ⊤ ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) |
| 11 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ ) |
| 12 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ ) |
| 13 |
11 12
|
bitr2i |
⊢ ( ⊥ ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) |
| 14 |
10 13
|
bibi12i |
⊢ ( ( ⊤ ↔ ⊥ ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
| 15 |
14
|
albii |
⊢ ( ∀ 𝑦 ( ⊤ ↔ ⊥ ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
| 16 |
7 15
|
mtbi |
⊢ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) |
| 17 |
|
dfcleq |
⊢ ( { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
| 18 |
|
dfv2 |
⊢ V = { 𝑥 ∣ ⊤ } |
| 19 |
18
|
eqcomi |
⊢ { 𝑥 ∣ ⊤ } = V |
| 20 |
|
dfnul4 |
⊢ ∅ = { 𝑥 ∣ ⊥ } |
| 21 |
20
|
eqcomi |
⊢ { 𝑥 ∣ ⊥ } = ∅ |
| 22 |
19 21
|
eqeq12i |
⊢ ( { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ↔ V = ∅ ) |
| 23 |
17 22
|
bitr3i |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ V = ∅ ) |
| 24 |
16 23
|
mtbi |
⊢ ¬ V = ∅ |
| 25 |
24
|
neir |
⊢ V ≠ ∅ |