Metamath Proof Explorer


Theorem vn0

Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Assertion vn0 V ≠ ∅

Proof

Step Hyp Ref Expression
1 fal ¬ ⊥
2 pm5.501 ( ⊤ → ( ⊥ ↔ ( ⊤ ↔ ⊥ ) ) )
3 2 mptru ( ⊥ ↔ ( ⊤ ↔ ⊥ ) )
4 1 3 mtbi ¬ ( ⊤ ↔ ⊥ )
5 4 exgen 𝑦 ¬ ( ⊤ ↔ ⊥ )
6 exnal ( ∃ 𝑦 ¬ ( ⊤ ↔ ⊥ ) ↔ ¬ ∀ 𝑦 ( ⊤ ↔ ⊥ ) )
7 5 6 mpbi ¬ ∀ 𝑦 ( ⊤ ↔ ⊥ )
8 df-clab ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ [ 𝑦 / 𝑥 ] ⊤ )
9 sbv ( [ 𝑦 / 𝑥 ] ⊤ ↔ ⊤ )
10 8 9 bitr2i ( ⊤ ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } )
11 df-clab ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ )
12 sbv ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ )
13 11 12 bitr2i ( ⊥ ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } )
14 10 13 bibi12i ( ( ⊤ ↔ ⊥ ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) )
15 14 albii ( ∀ 𝑦 ( ⊤ ↔ ⊥ ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) )
16 7 15 mtbi ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } )
17 dfcleq ( { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) )
18 dfv2 V = { 𝑥 ∣ ⊤ }
19 18 eqcomi { 𝑥 ∣ ⊤ } = V
20 dfnul4 ∅ = { 𝑥 ∣ ⊥ }
21 20 eqcomi { 𝑥 ∣ ⊥ } = ∅
22 19 21 eqeq12i ( { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ↔ V = ∅ )
23 17 22 bitr3i ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ V = ∅ )
24 16 23 mtbi ¬ V = ∅
25 24 neir V ≠ ∅