| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vextru |
⊢ 𝑦 ∈ { 𝑥 ∣ ⊤ } |
| 2 |
|
fal |
⊢ ¬ ⊥ |
| 3 |
1 2
|
2th |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ¬ ⊥ ) |
| 4 |
|
xor3 |
⊢ ( ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ¬ ⊥ ) ) |
| 5 |
3 4
|
mpbir |
⊢ ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) |
| 6 |
5
|
exgen |
⊢ ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) |
| 7 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ) |
| 8 |
6 7
|
mpbi |
⊢ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) |
| 9 |
|
dfv2 |
⊢ V = { 𝑥 ∣ ⊤ } |
| 10 |
|
dfnul4 |
⊢ ∅ = { 𝑥 ∣ ⊥ } |
| 11 |
9 10
|
eqeq12i |
⊢ ( V = ∅ ↔ { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ) |
| 12 |
|
biidd |
⊢ ( 𝑥 = 𝑦 → ( ⊥ ↔ ⊥ ) ) |
| 13 |
12
|
eqabbw |
⊢ ( { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ) |
| 14 |
11 13
|
bitri |
⊢ ( V = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ) |
| 15 |
8 14
|
mtbir |
⊢ ¬ V = ∅ |
| 16 |
15
|
neir |
⊢ V ≠ ∅ |