Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | vnex | ⊢ ¬ ∃ 𝑥 𝑥 = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset | ⊢ ¬ ∃ 𝑥 ∀ 𝑦 𝑦 ∈ 𝑥 | |
2 | vex | ⊢ 𝑦 ∈ V | |
3 | 2 | tbt | ⊢ ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V ) ) |
4 | 3 | albii | ⊢ ( ∀ 𝑦 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V ) ) |
5 | dfcleq | ⊢ ( 𝑥 = V ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V ) ) | |
6 | 4 5 | bitr4i | ⊢ ( ∀ 𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V ) |
7 | 6 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑦 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 𝑥 = V ) |
8 | 1 7 | mtbi | ⊢ ¬ ∃ 𝑥 𝑥 = V |