Metamath Proof Explorer


Theorem vnex

Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005)

Ref Expression
Assertion vnex ¬ ∃ 𝑥 𝑥 = V

Proof

Step Hyp Ref Expression
1 nalset ¬ ∃ 𝑥𝑦 𝑦𝑥
2 vex 𝑦 ∈ V
3 2 tbt ( 𝑦𝑥 ↔ ( 𝑦𝑥𝑦 ∈ V ) )
4 3 albii ( ∀ 𝑦 𝑦𝑥 ↔ ∀ 𝑦 ( 𝑦𝑥𝑦 ∈ V ) )
5 dfcleq ( 𝑥 = V ↔ ∀ 𝑦 ( 𝑦𝑥𝑦 ∈ V ) )
6 4 5 bitr4i ( ∀ 𝑦 𝑦𝑥𝑥 = V )
7 6 exbii ( ∃ 𝑥𝑦 𝑦𝑥 ↔ ∃ 𝑥 𝑥 = V )
8 1 7 mtbi ¬ ∃ 𝑥 𝑥 = V