Metamath Proof Explorer


Theorem vol0

Description: The measure of the empty set. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion vol0 ( vol ‘ ∅ ) = 0

Proof

Step Hyp Ref Expression
1 0mbl ∅ ∈ dom vol
2 mblvol ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) )
3 1 2 ax-mp ( vol ‘ ∅ ) = ( vol* ‘ ∅ )
4 ovol0 ( vol* ‘ ∅ ) = 0
5 3 4 eqtri ( vol ‘ ∅ ) = 0