| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volcn.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) ) ) | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  𝐴  ∈  dom  vol ) | 
						
							| 3 |  | iccmbl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐵 [,] 𝑥 )  ∈  dom  vol ) | 
						
							| 4 | 3 | adantll | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐵 [,] 𝑥 )  ∈  dom  vol ) | 
						
							| 5 |  | inmbl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( 𝐵 [,] 𝑥 )  ∈  dom  vol )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) )  ∈  dom  vol ) | 
						
							| 6 | 2 4 5 | syl2anc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) )  ∈  dom  vol ) | 
						
							| 7 |  | mblvol | ⊢ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) )  ∈  dom  vol  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) ) ) | 
						
							| 9 |  | inss2 | ⊢ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) )  ⊆  ( 𝐵 [,] 𝑥 ) | 
						
							| 10 |  | mblss | ⊢ ( ( 𝐵 [,] 𝑥 )  ∈  dom  vol  →  ( 𝐵 [,] 𝑥 )  ⊆  ℝ ) | 
						
							| 11 | 4 10 | syl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐵 [,] 𝑥 )  ⊆  ℝ ) | 
						
							| 12 |  | mblvol | ⊢ ( ( 𝐵 [,] 𝑥 )  ∈  dom  vol  →  ( vol ‘ ( 𝐵 [,] 𝑥 ) )  =  ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ) | 
						
							| 13 | 4 12 | syl | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( vol ‘ ( 𝐵 [,] 𝑥 ) )  =  ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ) | 
						
							| 14 |  | iccvolcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( vol ‘ ( 𝐵 [,] 𝑥 ) )  ∈  ℝ ) | 
						
							| 15 | 14 | adantll | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( vol ‘ ( 𝐵 [,] 𝑥 ) )  ∈  ℝ ) | 
						
							| 16 | 13 15 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( vol* ‘ ( 𝐵 [,] 𝑥 ) )  ∈  ℝ ) | 
						
							| 17 |  | ovolsscl | ⊢ ( ( ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) )  ⊆  ( 𝐵 [,] 𝑥 )  ∧  ( 𝐵 [,] 𝑥 )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝐵 [,] 𝑥 ) )  ∈  ℝ )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 18 | 9 11 16 17 | mp3an2i | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 19 | 8 18 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 20 | 19 1 | fmptd | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑒  ∈  ℝ+ ) )  →  𝑒  ∈  ℝ+ ) | 
						
							| 22 |  | oveq12 | ⊢ ( ( 𝑣  =  𝑧  ∧  𝑢  =  𝑦 )  →  ( 𝑣  −  𝑢 )  =  ( 𝑧  −  𝑦 ) ) | 
						
							| 23 | 22 | ancoms | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( 𝑣  −  𝑢 )  =  ( 𝑧  −  𝑦 ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( abs ‘ ( 𝑣  −  𝑢 ) )  =  ( abs ‘ ( 𝑧  −  𝑦 ) ) ) | 
						
							| 25 | 24 | breq1d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( ( abs ‘ ( 𝑣  −  𝑢 ) )  <  𝑒  ↔  ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑣  =  𝑧  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑢  =  𝑦  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 28 | 26 27 | oveqan12rd | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) )  =  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 30 | 29 | breq1d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) ) )  <  𝑒  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 31 | 25 30 | imbi12d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( ( ( abs ‘ ( 𝑣  −  𝑢 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) ) )  <  𝑒 )  ↔  ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) ) | 
						
							| 32 |  | oveq12 | ⊢ ( ( 𝑣  =  𝑦  ∧  𝑢  =  𝑧 )  →  ( 𝑣  −  𝑢 )  =  ( 𝑦  −  𝑧 ) ) | 
						
							| 33 | 32 | ancoms | ⊢ ( ( 𝑢  =  𝑧  ∧  𝑣  =  𝑦 )  →  ( 𝑣  −  𝑢 )  =  ( 𝑦  −  𝑧 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝑢  =  𝑧  ∧  𝑣  =  𝑦 )  →  ( abs ‘ ( 𝑣  −  𝑢 ) )  =  ( abs ‘ ( 𝑦  −  𝑧 ) ) ) | 
						
							| 35 | 34 | breq1d | ⊢ ( ( 𝑢  =  𝑧  ∧  𝑣  =  𝑦 )  →  ( ( abs ‘ ( 𝑣  −  𝑢 ) )  <  𝑒  ↔  ( abs ‘ ( 𝑦  −  𝑧 ) )  <  𝑒 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑣  =  𝑦  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑢  =  𝑧  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 38 | 36 37 | oveqan12rd | ⊢ ( ( 𝑢  =  𝑧  ∧  𝑣  =  𝑦 )  →  ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) )  =  ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( 𝑢  =  𝑧  ∧  𝑣  =  𝑦 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 40 | 39 | breq1d | ⊢ ( ( 𝑢  =  𝑧  ∧  𝑣  =  𝑦 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) ) )  <  𝑒  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑒 ) ) | 
						
							| 41 | 35 40 | imbi12d | ⊢ ( ( 𝑢  =  𝑧  ∧  𝑣  =  𝑦 )  →  ( ( ( abs ‘ ( 𝑣  −  𝑢 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑣 )  −  ( 𝐹 ‘ 𝑢 ) ) )  <  𝑒 )  ↔  ( ( abs ‘ ( 𝑦  −  𝑧 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑒 ) ) ) | 
						
							| 42 |  | ssidd | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  →  ℝ  ⊆  ℝ ) | 
						
							| 43 |  | recn | ⊢ ( 𝑧  ∈  ℝ  →  𝑧  ∈  ℂ ) | 
						
							| 44 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 45 |  | abssub | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( abs ‘ ( 𝑧  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑧 ) ) ) | 
						
							| 46 | 43 44 45 | syl2anr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( abs ‘ ( 𝑧  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑧 ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( abs ‘ ( 𝑧  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑧 ) ) ) | 
						
							| 48 | 47 | breq1d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  ↔  ( abs ‘ ( 𝑦  −  𝑧 ) )  <  𝑒 ) ) | 
						
							| 49 | 20 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 50 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 51 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 52 | 50 51 | anim12dan | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) ) | 
						
							| 53 | 49 52 | sylan | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) ) | 
						
							| 54 |  | recn | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ℝ  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 55 |  | recn | ⊢ ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 56 |  | abssub | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ℂ )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 57 | 54 55 56 | syl2anr | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℝ )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 58 | 53 57 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 59 | 58 | breq1d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑒 ) ) | 
						
							| 60 | 48 59 | imbi12d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 )  ↔  ( ( abs ‘ ( 𝑦  −  𝑧 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑒 ) ) ) | 
						
							| 61 |  | simpr2 | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 62 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐵 [,] 𝑥 )  =  ( 𝐵 [,] 𝑧 ) ) | 
						
							| 63 | 62 | ineq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) )  =  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( 𝑥  =  𝑧  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) )  =  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 65 |  | fvex | ⊢ ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  ∈  V | 
						
							| 66 | 64 1 65 | fvmpt | ⊢ ( 𝑧  ∈  ℝ  →  ( 𝐹 ‘ 𝑧 )  =  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 67 | 61 66 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 68 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝐴  ∈  dom  vol ) | 
						
							| 69 |  | simplr | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  →  𝐵  ∈  ℝ ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 71 |  | iccmbl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝐵 [,] 𝑧 )  ∈  dom  vol ) | 
						
							| 72 | 70 61 71 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐵 [,] 𝑧 )  ∈  dom  vol ) | 
						
							| 73 |  | inmbl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( 𝐵 [,] 𝑧 )  ∈  dom  vol )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ∈  dom  vol ) | 
						
							| 74 | 68 72 73 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ∈  dom  vol ) | 
						
							| 75 |  | mblvol | ⊢ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ∈  dom  vol  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 77 | 67 76 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 78 |  | simpr1 | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 79 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵 [,] 𝑥 )  =  ( 𝐵 [,] 𝑦 ) ) | 
						
							| 80 | 79 | ineq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) )  =  ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑥 ) ) )  =  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) ) | 
						
							| 82 |  | fvex | ⊢ ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  ∈  V | 
						
							| 83 | 81 1 82 | fvmpt | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝐹 ‘ 𝑦 )  =  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) ) | 
						
							| 84 | 78 83 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) ) | 
						
							| 85 |  | simp1 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 )  →  𝑦  ∈  ℝ ) | 
						
							| 86 |  | iccmbl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐵 [,] 𝑦 )  ∈  dom  vol ) | 
						
							| 87 | 69 85 86 | syl2an | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐵 [,] 𝑦 )  ∈  dom  vol ) | 
						
							| 88 |  | inmbl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( 𝐵 [,] 𝑦 )  ∈  dom  vol )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∈  dom  vol ) | 
						
							| 89 | 68 87 88 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∈  dom  vol ) | 
						
							| 90 |  | mblvol | ⊢ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∈  dom  vol  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) ) | 
						
							| 91 | 89 90 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) ) | 
						
							| 92 | 84 91 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) ) | 
						
							| 93 | 77 92 | oveq12d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  =  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  −  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) ) ) | 
						
							| 94 | 49 | adantr | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 95 | 94 61 | ffvelcdmd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 96 | 77 95 | eqeltrrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 97 | 70 | leidd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝐵  ≤  𝐵 ) | 
						
							| 98 |  | simpr3 | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝑦  ≤  𝑧 ) | 
						
							| 99 |  | iccss | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  ( 𝐵  ≤  𝐵  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐵 [,] 𝑦 )  ⊆  ( 𝐵 [,] 𝑧 ) ) | 
						
							| 100 | 70 61 97 98 99 | syl22anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐵 [,] 𝑦 )  ⊆  ( 𝐵 [,] 𝑧 ) ) | 
						
							| 101 |  | sslin | ⊢ ( ( 𝐵 [,] 𝑦 )  ⊆  ( 𝐵 [,] 𝑧 )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ⊆  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) | 
						
							| 102 | 100 101 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ⊆  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) | 
						
							| 103 |  | mblss | ⊢ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ∈  dom  vol  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ⊆  ℝ ) | 
						
							| 104 | 74 103 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ⊆  ℝ ) | 
						
							| 105 | 102 104 | sstrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ⊆  ℝ ) | 
						
							| 106 |  | iccssre | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑦 [,] 𝑧 )  ⊆  ℝ ) | 
						
							| 107 | 78 61 106 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝑦 [,] 𝑧 )  ⊆  ℝ ) | 
						
							| 108 | 105 107 | unssd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) )  ⊆  ℝ ) | 
						
							| 109 | 94 78 | ffvelcdmd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 110 | 92 109 | eqeltrrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 111 | 61 78 | resubcld | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝑧  −  𝑦 )  ∈  ℝ ) | 
						
							| 112 | 110 111 | readdcld | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( 𝑧  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 113 |  | ovolicc | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 )  →  ( vol* ‘ ( 𝑦 [,] 𝑧 ) )  =  ( 𝑧  −  𝑦 ) ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( 𝑦 [,] 𝑧 ) )  =  ( 𝑧  −  𝑦 ) ) | 
						
							| 115 | 114 111 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( 𝑦 [,] 𝑧 ) )  ∈  ℝ ) | 
						
							| 116 |  | ovolun | ⊢ ( ( ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  ∈  ℝ )  ∧  ( ( 𝑦 [,] 𝑧 )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝑦 [,] 𝑧 ) )  ∈  ℝ ) )  →  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) )  ≤  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) ) | 
						
							| 117 | 105 110 107 115 116 | syl22anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) )  ≤  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) ) | 
						
							| 118 | 114 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) )  =  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( 𝑧  −  𝑦 ) ) ) | 
						
							| 119 | 117 118 | breqtrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) )  ≤  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( 𝑧  −  𝑦 ) ) ) | 
						
							| 120 |  | ovollecl | ⊢ ( ( ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) )  ⊆  ℝ  ∧  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( 𝑧  −  𝑦 ) )  ∈  ℝ  ∧  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) )  ≤  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( 𝑧  −  𝑦 ) ) )  →  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 121 | 108 112 119 120 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 122 | 70 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  𝐵  ∈  ℝ ) | 
						
							| 123 | 61 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  𝑧  ∈  ℝ ) | 
						
							| 124 | 78 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  𝑦  ∈  ℝ ) | 
						
							| 125 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  𝐵  ≤  𝑦 ) | 
						
							| 126 | 98 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  𝑦  ≤  𝑧 ) | 
						
							| 127 |  | simp2 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 )  →  𝑧  ∈  ℝ ) | 
						
							| 128 |  | elicc2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑦  ∈  ( 𝐵 [,] 𝑧 )  ↔  ( 𝑦  ∈  ℝ  ∧  𝐵  ≤  𝑦  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 129 | 69 127 128 | syl2an | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝑦  ∈  ( 𝐵 [,] 𝑧 )  ↔  ( 𝑦  ∈  ℝ  ∧  𝐵  ≤  𝑦  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  ( 𝑦  ∈  ( 𝐵 [,] 𝑧 )  ↔  ( 𝑦  ∈  ℝ  ∧  𝐵  ≤  𝑦  ∧  𝑦  ≤  𝑧 ) ) ) | 
						
							| 131 | 124 125 126 130 | mpbir3and | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  𝑦  ∈  ( 𝐵 [,] 𝑧 ) ) | 
						
							| 132 |  | iccsplit | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ∈  ( 𝐵 [,] 𝑧 ) )  →  ( 𝐵 [,] 𝑧 )  =  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 133 | 122 123 131 132 | syl3anc | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  ( 𝐵 [,] 𝑧 )  =  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 134 |  | eqimss | ⊢ ( ( 𝐵 [,] 𝑧 )  =  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) )  →  ( 𝐵 [,] 𝑧 )  ⊆  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 135 | 133 134 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝐵  ≤  𝑦 )  →  ( 𝐵 [,] 𝑧 )  ⊆  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 136 | 78 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝑦  ≤  𝐵 )  →  𝑦  ∈  ℝ ) | 
						
							| 137 | 61 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝑦  ≤  𝐵 )  →  𝑧  ∈  ℝ ) | 
						
							| 138 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝑦  ≤  𝐵 )  →  𝑦  ≤  𝐵 ) | 
						
							| 139 | 137 | leidd | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝑦  ≤  𝐵 )  →  𝑧  ≤  𝑧 ) | 
						
							| 140 |  | iccss | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  ( 𝑦  ≤  𝐵  ∧  𝑧  ≤  𝑧 ) )  →  ( 𝐵 [,] 𝑧 )  ⊆  ( 𝑦 [,] 𝑧 ) ) | 
						
							| 141 | 136 137 138 139 140 | syl22anc | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝑦  ≤  𝐵 )  →  ( 𝐵 [,] 𝑧 )  ⊆  ( 𝑦 [,] 𝑧 ) ) | 
						
							| 142 |  | ssun4 | ⊢ ( ( 𝐵 [,] 𝑧 )  ⊆  ( 𝑦 [,] 𝑧 )  →  ( 𝐵 [,] 𝑧 )  ⊆  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 143 | 141 142 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  ∧  𝑦  ≤  𝐵 )  →  ( 𝐵 [,] 𝑧 )  ⊆  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 144 | 70 78 135 143 | lecasei | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐵 [,] 𝑧 )  ⊆  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 145 |  | sslin | ⊢ ( ( 𝐵 [,] 𝑧 )  ⊆  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ⊆  ( 𝐴  ∩  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) ) | 
						
							| 146 | 144 145 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ⊆  ( 𝐴  ∩  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) ) ) | 
						
							| 147 |  | indi | ⊢ ( 𝐴  ∩  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) )  =  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝐴  ∩  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 148 |  | inss2 | ⊢ ( 𝐴  ∩  ( 𝑦 [,] 𝑧 ) )  ⊆  ( 𝑦 [,] 𝑧 ) | 
						
							| 149 |  | unss2 | ⊢ ( ( 𝐴  ∩  ( 𝑦 [,] 𝑧 ) )  ⊆  ( 𝑦 [,] 𝑧 )  →  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝐴  ∩  ( 𝑦 [,] 𝑧 ) ) )  ⊆  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 150 | 148 149 | ax-mp | ⊢ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝐴  ∩  ( 𝑦 [,] 𝑧 ) ) )  ⊆  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) | 
						
							| 151 | 147 150 | eqsstri | ⊢ ( 𝐴  ∩  ( ( 𝐵 [,] 𝑦 )  ∪  ( 𝑦 [,] 𝑧 ) ) )  ⊆  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) | 
						
							| 152 | 146 151 | sstrdi | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ⊆  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) ) | 
						
							| 153 |  | ovolss | ⊢ ( ( ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ⊆  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) )  ∧  ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) )  ⊆  ℝ )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  ≤  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) ) ) | 
						
							| 154 | 152 108 153 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  ≤  ( vol* ‘ ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ∪  ( 𝑦 [,] 𝑧 ) ) ) ) | 
						
							| 155 | 96 121 112 154 119 | letrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  ≤  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( 𝑧  −  𝑦 ) ) ) | 
						
							| 156 | 96 110 111 | lesubadd2d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  −  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) )  ≤  ( 𝑧  −  𝑦 )  ↔  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  ≤  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  +  ( 𝑧  −  𝑦 ) ) ) ) | 
						
							| 157 | 155 156 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) )  −  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) ) )  ≤  ( 𝑧  −  𝑦 ) ) | 
						
							| 158 | 93 157 | eqbrtrd | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝑧  −  𝑦 ) ) | 
						
							| 159 | 95 109 | resubcld | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 160 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝑒  ∈  ℝ+ ) | 
						
							| 161 | 160 | rpred | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  𝑒  ∈  ℝ ) | 
						
							| 162 |  | lelttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ  ∧  ( 𝑧  −  𝑦 )  ∈  ℝ  ∧  𝑒  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝑧  −  𝑦 )  ∧  ( 𝑧  −  𝑦 )  <  𝑒 )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  <  𝑒 ) ) | 
						
							| 163 | 159 111 161 162 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝑧  −  𝑦 )  ∧  ( 𝑧  −  𝑦 )  <  𝑒 )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  <  𝑒 ) ) | 
						
							| 164 | 158 163 | mpand | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( 𝑧  −  𝑦 )  <  𝑒  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  <  𝑒 ) ) | 
						
							| 165 |  | abssubge0 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 )  →  ( abs ‘ ( 𝑧  −  𝑦 ) )  =  ( 𝑧  −  𝑦 ) ) | 
						
							| 166 | 165 | adantl | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( abs ‘ ( 𝑧  −  𝑦 ) )  =  ( 𝑧  −  𝑦 ) ) | 
						
							| 167 | 166 | breq1d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  ↔  ( 𝑧  −  𝑦 )  <  𝑒 ) ) | 
						
							| 168 |  | ovolss | ⊢ ( ( ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) )  ⊆  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ∧  ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) )  ⊆  ℝ )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  ≤  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 169 | 102 104 168 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑦 ) ) )  ≤  ( vol* ‘ ( 𝐴  ∩  ( 𝐵 [,] 𝑧 ) ) ) ) | 
						
							| 170 | 169 92 77 | 3brtr4d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 171 | 109 95 170 | abssubge0d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 172 | 171 | breq1d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒  ↔  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) )  <  𝑒 ) ) | 
						
							| 173 | 164 167 172 | 3imtr4d | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  𝑦  ≤  𝑧 ) )  →  ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 174 | 31 41 42 60 173 | wlogle | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 175 | 174 | anassrs | ⊢ ( ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  ℝ )  →  ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 176 | 175 | ralrimiva | ⊢ ( ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  𝑒  ∈  ℝ+ )  ∧  𝑦  ∈  ℝ )  →  ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 177 | 176 | anasss | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  ( 𝑒  ∈  ℝ+  ∧  𝑦  ∈  ℝ ) )  →  ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 178 | 177 | ancom2s | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑒  ∈  ℝ+ ) )  →  ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 179 |  | breq2 | ⊢ ( 𝑑  =  𝑒  →  ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑑  ↔  ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒 ) ) | 
						
							| 180 | 179 | rspceaimv | ⊢ ( ( 𝑒  ∈  ℝ+  ∧  ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑒  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑑  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 181 | 21 178 180 | syl2anc | ⊢ ( ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑒  ∈  ℝ+ ) )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑑  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 182 | 181 | ralrimivva | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  →  ∀ 𝑦  ∈  ℝ ∀ 𝑒  ∈  ℝ+ ∃ 𝑑  ∈  ℝ+ ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑑  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) | 
						
							| 183 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 184 |  | elcncf2 | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( 𝐹  ∈  ( ℝ –cn→ ℝ )  ↔  ( 𝐹 : ℝ ⟶ ℝ  ∧  ∀ 𝑦  ∈  ℝ ∀ 𝑒  ∈  ℝ+ ∃ 𝑑  ∈  ℝ+ ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑑  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) ) ) | 
						
							| 185 | 183 183 184 | mp2an | ⊢ ( 𝐹  ∈  ( ℝ –cn→ ℝ )  ↔  ( 𝐹 : ℝ ⟶ ℝ  ∧  ∀ 𝑦  ∈  ℝ ∀ 𝑒  ∈  ℝ+ ∃ 𝑑  ∈  ℝ+ ∀ 𝑧  ∈  ℝ ( ( abs ‘ ( 𝑧  −  𝑦 ) )  <  𝑑  →  ( abs ‘ ( ( 𝐹 ‘ 𝑧 )  −  ( 𝐹 ‘ 𝑦 ) ) )  <  𝑒 ) ) ) | 
						
							| 186 | 20 182 185 | sylanbrc | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  𝐵  ∈  ℝ )  →  𝐹  ∈  ( ℝ –cn→ ℝ ) ) |