Metamath Proof Explorer


Theorem volf

Description: The domain and range of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion volf vol : dom vol ⟶ ( 0 [,] +∞ )

Proof

Step Hyp Ref Expression
1 ovolf vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ )
2 ffun ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → Fun vol* )
3 funres ( Fun vol* → Fun ( vol* ↾ dom vol ) )
4 1 2 3 mp2b Fun ( vol* ↾ dom vol )
5 volres vol = ( vol* ↾ dom vol )
6 5 funeqi ( Fun vol ↔ Fun ( vol* ↾ dom vol ) )
7 4 6 mpbir Fun vol
8 resss ( vol* ↾ dom vol ) ⊆ vol*
9 5 8 eqsstri vol ⊆ vol*
10 fssxp ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → vol* ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) )
11 1 10 ax-mp vol* ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) )
12 9 11 sstri vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) )
13 7 12 pm3.2i ( Fun vol ∧ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) )
14 funssxp ( ( Fun vol ∧ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) ) ↔ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ dom vol ⊆ 𝒫 ℝ ) )
15 13 14 mpbi ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ dom vol ⊆ 𝒫 ℝ )
16 15 simpli vol : dom vol ⟶ ( 0 [,] +∞ )