| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolf |
⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) |
| 2 |
|
ffun |
⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → Fun vol* ) |
| 3 |
|
funres |
⊢ ( Fun vol* → Fun ( vol* ↾ dom vol ) ) |
| 4 |
1 2 3
|
mp2b |
⊢ Fun ( vol* ↾ dom vol ) |
| 5 |
|
volres |
⊢ vol = ( vol* ↾ dom vol ) |
| 6 |
5
|
funeqi |
⊢ ( Fun vol ↔ Fun ( vol* ↾ dom vol ) ) |
| 7 |
4 6
|
mpbir |
⊢ Fun vol |
| 8 |
|
resss |
⊢ ( vol* ↾ dom vol ) ⊆ vol* |
| 9 |
5 8
|
eqsstri |
⊢ vol ⊆ vol* |
| 10 |
|
fssxp |
⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → vol* ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) ) |
| 11 |
1 10
|
ax-mp |
⊢ vol* ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) |
| 12 |
9 11
|
sstri |
⊢ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) |
| 13 |
7 12
|
pm3.2i |
⊢ ( Fun vol ∧ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) ) |
| 14 |
|
funssxp |
⊢ ( ( Fun vol ∧ vol ⊆ ( 𝒫 ℝ × ( 0 [,] +∞ ) ) ) ↔ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ dom vol ⊆ 𝒫 ℝ ) ) |
| 15 |
13 14
|
mpbi |
⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ dom vol ⊆ 𝒫 ℝ ) |
| 16 |
15
|
simpli |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |