Metamath Proof Explorer


Theorem volge0

Description: The volume of a set is always nonnegative. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion volge0 ( 𝐴 ∈ dom vol → 0 ≤ ( vol ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mblss ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )
2 ovolge0 ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) )
3 1 2 syl ( 𝐴 ∈ dom vol → 0 ≤ ( vol* ‘ 𝐴 ) )
4 mblvol ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) )
5 3 4 breqtrrd ( 𝐴 ∈ dom vol → 0 ≤ ( vol ‘ 𝐴 ) )