| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iccmbl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ∈  dom  vol )  | 
						
						
							| 2 | 
							
								
							 | 
							mblvol | 
							⊢ ( ( 𝐴 [,] 𝐵 )  ∈  dom  vol  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ovolicc | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol* ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐵  −  𝐴 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐵  −  𝐴 ) )  |