Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
3 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
6 |
|
snunioo1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
7 |
2 4 5 6
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
10 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
11 |
10
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
12 |
|
snmbl |
⊢ ( 𝐴 ∈ ℝ → { 𝐴 } ∈ dom vol ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → { 𝐴 } ∈ dom vol ) |
14 |
|
lbioo |
⊢ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) |
15 |
|
disjsn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ) |
16 |
14 15
|
mpbir |
⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) = ∅ |
17 |
16
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) = ∅ ) |
18 |
|
ioovolcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
20 |
|
volsn |
⊢ ( 𝐴 ∈ ℝ → ( vol ‘ { 𝐴 } ) = 0 ) |
21 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
22 |
20 21
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ → ( vol ‘ { 𝐴 } ) ∈ ℝ ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ { 𝐴 } ) ∈ ℝ ) |
24 |
|
volun |
⊢ ( ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ { 𝐴 } ∈ dom vol ∧ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ { 𝐴 } ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 } ) ) ) |
25 |
11 13 17 19 23 24
|
syl32anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 } ) ) ) |
26 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
27 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
28 |
26 27 5
|
ltled |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
29 |
|
volioo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
31 |
20
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ { 𝐴 } ) = 0 ) |
32 |
30 31
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 } ) ) = ( ( 𝐵 − 𝐴 ) + 0 ) ) |
33 |
27
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
34 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
36 |
33 35
|
subcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
37 |
36
|
addid1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 − 𝐴 ) + 0 ) = ( 𝐵 − 𝐴 ) ) |
38 |
32 37
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 } ) ) = ( 𝐵 − 𝐴 ) ) |
39 |
9 25 38
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
40 |
39
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
41 |
|
iftrue |
⊢ ( 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
43 |
40 42
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
44 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
45 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → ¬ 𝐴 < 𝐵 ) |
46 |
44
|
simprd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
47 |
44
|
simpld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
48 |
46 47
|
lenltd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
49 |
45 48
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐴 ) |
50 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) |
51 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
52 |
3
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ∈ ℝ* ) |
53 |
|
ico0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
54 |
51 52 53
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 [,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
55 |
50 54
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 [,) 𝐵 ) = ∅ ) |
56 |
55
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = ( vol ‘ ∅ ) ) |
57 |
|
vol0 |
⊢ ( vol ‘ ∅ ) = 0 |
58 |
57
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( vol ‘ ∅ ) = 0 ) |
59 |
56 58
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = 0 ) |
60 |
44 49 59
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = 0 ) |
61 |
|
iffalse |
⊢ ( ¬ 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
62 |
61
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
63 |
60 62
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
64 |
43 63
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |