Metamath Proof Explorer


Theorem volicofmpt

Description: ( ( vol o. [,) ) o. F ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses volicofmpt.1 𝑥 𝐹
volicofmpt.2 ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ × ℝ* ) )
Assertion volicofmpt ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑥𝐴 ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 volicofmpt.1 𝑥 𝐹
2 volicofmpt.2 ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ × ℝ* ) )
3 nfcv 𝑥 𝐴
4 nfcv 𝑥 ( vol ∘ [,) )
5 4 1 nfco 𝑥 ( ( vol ∘ [,) ) ∘ 𝐹 )
6 2 volicoff ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
7 3 5 6 feqmptdf ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑥𝐴 ↦ ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) ) )
8 ressxr ℝ ⊆ ℝ*
9 xpss1 ( ℝ ⊆ ℝ* → ( ℝ × ℝ* ) ⊆ ( ℝ* × ℝ* ) )
10 8 9 ax-mp ( ℝ × ℝ* ) ⊆ ( ℝ* × ℝ* )
11 10 a1i ( 𝜑 → ( ℝ × ℝ* ) ⊆ ( ℝ* × ℝ* ) )
12 2 11 fssd ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) )
13 12 adantr ( ( 𝜑𝑥𝐴 ) → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) )
14 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
15 13 14 fvvolicof ( ( 𝜑𝑥𝐴 ) → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) )
16 15 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( 𝑥𝐴 ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) ) )
17 7 16 eqtrd ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑥𝐴 ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) ) )