| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							volicofmpt.1 | 
							⊢ Ⅎ 𝑥 𝐹  | 
						
						
							| 2 | 
							
								
							 | 
							volicofmpt.2 | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ  ×  ℝ* ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 ( vol  ∘  [,) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							nfco | 
							⊢ Ⅎ 𝑥 ( ( vol  ∘  [,) )  ∘  𝐹 )  | 
						
						
							| 6 | 
							
								2
							 | 
							volicoff | 
							⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							feqmptdf | 
							⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ressxr | 
							⊢ ℝ  ⊆  ℝ*  | 
						
						
							| 9 | 
							
								
							 | 
							xpss1 | 
							⊢ ( ℝ  ⊆  ℝ*  →  ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							fssd | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐴 ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							fvvolicof | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								7 16
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 )  =  ( 𝑥  ∈  𝐴  ↦  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) )  |