Step |
Hyp |
Ref |
Expression |
1 |
|
volicofmpt.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
volicofmpt.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( ℝ × ℝ* ) ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 ( vol ∘ [,) ) |
5 |
4 1
|
nfco |
⊢ Ⅎ 𝑥 ( ( vol ∘ [,) ) ∘ 𝐹 ) |
6 |
2
|
volicoff |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
7 |
3 5 6
|
feqmptdf |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
8 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
9 |
|
xpss1 |
⊢ ( ℝ ⊆ ℝ* → ( ℝ × ℝ* ) ⊆ ( ℝ* × ℝ* ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ℝ × ℝ* ) ⊆ ( ℝ* × ℝ* ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( ℝ × ℝ* ) ⊆ ( ℝ* × ℝ* ) ) |
12 |
2 11
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
15 |
13 14
|
fvvolicof |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
16 |
15
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
17 |
7 16
|
eqtrd |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |