| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
| 2 |
1
|
fveq2i |
⊢ ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( vol ‘ 𝐴 ) |
| 3 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |
| 5 |
|
difmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |
| 7 |
|
indifcom |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) |
| 8 |
|
difin0 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) = ∅ |
| 9 |
8
|
ineq2i |
⊢ ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) = ( 𝐴 ∩ ∅ ) |
| 10 |
|
in0 |
⊢ ( 𝐴 ∩ ∅ ) = ∅ |
| 11 |
9 10
|
eqtri |
⊢ ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) = ∅ |
| 12 |
7 11
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
| 13 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
| 14 |
|
mblvol |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 15 |
4 14
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 16 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 17 |
16
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
| 18 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
| 20 |
|
mblvol |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
| 22 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
| 23 |
21 22
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 24 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 25 |
17 19 23 24
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 26 |
15 25
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 27 |
|
mblvol |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
| 28 |
6 27
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
| 29 |
|
difssd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) |
| 30 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 31 |
29 19 23 30
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 32 |
28 31
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 33 |
|
volun |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) ∈ dom vol ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom vol ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 34 |
4 6 13 26 32 33
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 35 |
2 34
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 36 |
35
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) + ( vol ‘ 𝐵 ) ) ) |
| 37 |
26
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 38 |
32
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
| 39 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐵 ) ∈ ℝ ) |
| 40 |
39
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐵 ) ∈ ℂ ) |
| 41 |
37 38 40
|
addassd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) + ( vol ‘ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) ) |
| 42 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → 𝐵 ∈ dom vol ) |
| 43 |
|
disjdifr |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ |
| 44 |
43
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) |
| 45 |
|
volun |
⊢ ( ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) |
| 46 |
6 42 44 32 39 45
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) |
| 47 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
| 48 |
47
|
fveq2i |
⊢ ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 49 |
46 48
|
eqtr3di |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) = ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 50 |
49
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 51 |
36 41 50
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |