Step |
Hyp |
Ref |
Expression |
1 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
2 |
1
|
fveq2i |
⊢ ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( vol ‘ 𝐴 ) |
3 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |
5 |
|
difmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |
7 |
|
indifcom |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) |
8 |
|
difin0 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) = ∅ |
9 |
8
|
ineq2i |
⊢ ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) = ( 𝐴 ∩ ∅ ) |
10 |
|
in0 |
⊢ ( 𝐴 ∩ ∅ ) = ∅ |
11 |
9 10
|
eqtri |
⊢ ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) = ∅ |
12 |
7 11
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
13 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
14 |
|
mblvol |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
15 |
4 14
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
16 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
17 |
16
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
18 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
20 |
|
mblvol |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
22 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
23 |
21 22
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
24 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
25 |
17 19 23 24
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
26 |
15 25
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
27 |
|
mblvol |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
28 |
6 27
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
29 |
|
difssd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) |
30 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
31 |
29 19 23 30
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
32 |
28 31
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
33 |
|
volun |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) ∈ dom vol ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom vol ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
34 |
4 6 13 26 32 33
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
35 |
2 34
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) + ( vol ‘ 𝐵 ) ) ) |
37 |
26
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
38 |
32
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
39 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐵 ) ∈ ℝ ) |
40 |
39
|
recnd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐵 ) ∈ ℂ ) |
41 |
37 38 40
|
addassd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) + ( vol ‘ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) ) |
42 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → 𝐵 ∈ dom vol ) |
43 |
|
disjdifr |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ |
44 |
43
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) |
45 |
|
volun |
⊢ ( ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) |
46 |
6 42 44 32 39 45
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) |
47 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
48 |
47
|
fveq2i |
⊢ ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) |
49 |
46 48
|
eqtr3di |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) = ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
50 |
49
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
51 |
36 41 50
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |