Description: The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volioo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
| 2 | mblvol | ⊢ ( ( 𝐴 (,) 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) | 
| 4 | ovolioo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | |
| 5 | 3 4 | eqtrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |