Description: The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | volioo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
2 | mblvol | ⊢ ( ( 𝐴 (,) 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) |
4 | ovolioo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | |
5 | 3 4 | syl5eq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |