Metamath Proof Explorer


Theorem volioof

Description: The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volioof ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ )

Proof

Step Hyp Ref Expression
1 volf vol : dom vol ⟶ ( 0 [,] +∞ )
2 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
3 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
4 2 3 ax-mp (,) Fn ( ℝ* × ℝ* )
5 df-ov ( ( 1st𝑥 ) (,) ( 2nd𝑥 ) ) = ( (,) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
6 5 a1i ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( ( 1st𝑥 ) (,) ( 2nd𝑥 ) ) = ( (,) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
7 1st2nd2 ( 𝑥 ∈ ( ℝ* × ℝ* ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
8 7 eqcomd ( 𝑥 ∈ ( ℝ* × ℝ* ) → ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ = 𝑥 )
9 8 fveq2d ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( (,) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) = ( (,) ‘ 𝑥 ) )
10 6 9 eqtr2d ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( (,) ‘ 𝑥 ) = ( ( 1st𝑥 ) (,) ( 2nd𝑥 ) ) )
11 ioombl ( ( 1st𝑥 ) (,) ( 2nd𝑥 ) ) ∈ dom vol
12 10 11 eqeltrdi ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( (,) ‘ 𝑥 ) ∈ dom vol )
13 12 rgen 𝑥 ∈ ( ℝ* × ℝ* ) ( (,) ‘ 𝑥 ) ∈ dom vol
14 4 13 pm3.2i ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ( ℝ* × ℝ* ) ( (,) ‘ 𝑥 ) ∈ dom vol )
15 ffnfv ( (,) : ( ℝ* × ℝ* ) ⟶ dom vol ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ( ℝ* × ℝ* ) ( (,) ‘ 𝑥 ) ∈ dom vol ) )
16 14 15 mpbir (,) : ( ℝ* × ℝ* ) ⟶ dom vol
17 fco ( ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ (,) : ( ℝ* × ℝ* ) ⟶ dom vol ) → ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) )
18 1 16 17 mp2an ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ )