Step |
Hyp |
Ref |
Expression |
1 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
2 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
3 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
4 |
2 3
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
5 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑥 ) (,) ( 2nd ‘ 𝑥 ) ) = ( (,) ‘ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
6 |
5
|
a1i |
⊢ ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( ( 1st ‘ 𝑥 ) (,) ( 2nd ‘ 𝑥 ) ) = ( (,) ‘ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) |
7 |
|
1st2nd2 |
⊢ ( 𝑥 ∈ ( ℝ* × ℝ* ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
8 |
7
|
eqcomd |
⊢ ( 𝑥 ∈ ( ℝ* × ℝ* ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 = 𝑥 ) |
9 |
8
|
fveq2d |
⊢ ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( (,) ‘ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) = ( (,) ‘ 𝑥 ) ) |
10 |
6 9
|
eqtr2d |
⊢ ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( (,) ‘ 𝑥 ) = ( ( 1st ‘ 𝑥 ) (,) ( 2nd ‘ 𝑥 ) ) ) |
11 |
|
ioombl |
⊢ ( ( 1st ‘ 𝑥 ) (,) ( 2nd ‘ 𝑥 ) ) ∈ dom vol |
12 |
10 11
|
eqeltrdi |
⊢ ( 𝑥 ∈ ( ℝ* × ℝ* ) → ( (,) ‘ 𝑥 ) ∈ dom vol ) |
13 |
12
|
rgen |
⊢ ∀ 𝑥 ∈ ( ℝ* × ℝ* ) ( (,) ‘ 𝑥 ) ∈ dom vol |
14 |
4 13
|
pm3.2i |
⊢ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ( ℝ* × ℝ* ) ( (,) ‘ 𝑥 ) ∈ dom vol ) |
15 |
|
ffnfv |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ dom vol ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ( ℝ* × ℝ* ) ( (,) ‘ 𝑥 ) ∈ dom vol ) ) |
16 |
14 15
|
mpbir |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ dom vol |
17 |
|
fco |
⊢ ( ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ (,) : ( ℝ* × ℝ* ) ⟶ dom vol ) → ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) ) |
18 |
1 16 17
|
mp2an |
⊢ ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) |