| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							voliooicof.1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ  ×  ℝ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							volioof | 
							⊢ ( vol  ∘  (,) ) : ( ℝ*  ×  ℝ* ) ⟶ ( 0 [,] +∞ )  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( vol  ∘  (,) ) : ( ℝ*  ×  ℝ* ) ⟶ ( 0 [,] +∞ ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rexpssxrxp | 
							⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* )  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 6 | 
							
								3 5 1
							 | 
							fcoss | 
							⊢ ( 𝜑  →  ( ( vol  ∘  (,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ffnd | 
							⊢ ( 𝜑  →  ( ( vol  ∘  (,) )  ∘  𝐹 )  Fn  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							volf | 
							⊢ vol : dom  vol ⟶ ( 0 [,] +∞ )  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							⊢ ( 𝜑  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) )  | 
						
						
							| 10 | 
							
								
							 | 
							icof | 
							⊢ [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝜑  →  [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* )  | 
						
						
							| 12 | 
							
								11 5 1
							 | 
							fcoss | 
							⊢ ( 𝜑  →  ( [,)  ∘  𝐹 ) : 𝐴 ⟶ 𝒫  ℝ* )  | 
						
						
							| 13 | 
							
								12
							 | 
							ffnd | 
							⊢ ( 𝜑  →  ( [,)  ∘  𝐹 )  Fn  𝐴 )  | 
						
						
							| 14 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐴 ⟶ ( ℝ  ×  ℝ ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							fvovco | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ×  ℝ ) )  | 
						
						
							| 18 | 
							
								
							 | 
							xp1st | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ )  | 
						
						
							| 20 | 
							
								
							 | 
							xp2nd | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ )  | 
						
						
							| 22 | 
							
								21
							 | 
							rexrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ* )  | 
						
						
							| 23 | 
							
								
							 | 
							icombl | 
							⊢ ( ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ* )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  dom  vol )  | 
						
						
							| 24 | 
							
								19 22 23
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  dom  vol )  | 
						
						
							| 25 | 
							
								16 24
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  ∈  dom  vol )  | 
						
						
							| 26 | 
							
								25
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  ∈  dom  vol )  | 
						
						
							| 27 | 
							
								13 26
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( [,)  ∘  𝐹 )  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  ∈  dom  vol ) )  | 
						
						
							| 28 | 
							
								
							 | 
							ffnfv | 
							⊢ ( ( [,)  ∘  𝐹 ) : 𝐴 ⟶ dom  vol  ↔  ( ( [,)  ∘  𝐹 )  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  ∈  dom  vol ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( [,)  ∘  𝐹 ) : 𝐴 ⟶ dom  vol )  | 
						
						
							| 30 | 
							
								
							 | 
							fco | 
							⊢ ( ( vol : dom  vol ⟶ ( 0 [,] +∞ )  ∧  ( [,)  ∘  𝐹 ) : 𝐴 ⟶ dom  vol )  →  ( vol  ∘  ( [,)  ∘  𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) )  | 
						
						
							| 31 | 
							
								9 29 30
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( vol  ∘  ( [,)  ∘  𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) )  | 
						
						
							| 32 | 
							
								
							 | 
							coass | 
							⊢ ( ( vol  ∘  [,) )  ∘  𝐹 )  =  ( vol  ∘  ( [,)  ∘  𝐹 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 )  =  ( vol  ∘  ( [,)  ∘  𝐹 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							feq1d | 
							⊢ ( 𝜑  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ )  ↔  ( vol  ∘  ( [,)  ∘  𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ffnd | 
							⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 )  Fn  𝐴 )  | 
						
						
							| 37 | 
							
								19 21
							 | 
							voliooico | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 38 | 
							
								1 5
							 | 
							fssd | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐴 ⟶ ( ℝ*  ×  ℝ* ) )  | 
						
						
							| 40 | 
							
								39 15
							 | 
							fvvolioof | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( vol  ∘  (,) )  ∘  𝐹 ) ‘ 𝑥 )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 41 | 
							
								39 15
							 | 
							fvvolicof | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 42 | 
							
								37 40 41
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( vol  ∘  (,) )  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 ) )  | 
						
						
							| 43 | 
							
								7 36 42
							 | 
							eqfnfvd | 
							⊢ ( 𝜑  →  ( ( vol  ∘  (,) )  ∘  𝐹 )  =  ( ( vol  ∘  [,) )  ∘  𝐹 ) )  |