Metamath Proof Explorer


Theorem voliooicof

Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis voliooicof.1 ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ × ℝ ) )
Assertion voliooicof ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) = ( ( vol ∘ [,) ) ∘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 voliooicof.1 ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ × ℝ ) )
2 volioof ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ )
3 2 a1i ( 𝜑 → ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) )
4 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
5 4 a1i ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) )
6 3 5 1 fcoss ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
7 6 ffnd ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) Fn 𝐴 )
8 volf vol : dom vol ⟶ ( 0 [,] +∞ )
9 8 a1i ( 𝜑 → vol : dom vol ⟶ ( 0 [,] +∞ ) )
10 icof [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
11 10 a1i ( 𝜑 → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* )
12 11 5 1 fcoss ( 𝜑 → ( [,) ∘ 𝐹 ) : 𝐴 ⟶ 𝒫 ℝ* )
13 12 ffnd ( 𝜑 → ( [,) ∘ 𝐹 ) Fn 𝐴 )
14 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐹 : 𝐴 ⟶ ( ℝ × ℝ ) )
15 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
16 14 15 fvovco ( ( 𝜑𝑥𝐴 ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) )
17 1 ffvelrnda ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ( ℝ × ℝ ) )
18 xp1st ( ( 𝐹𝑥 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
19 17 18 syl ( ( 𝜑𝑥𝐴 ) → ( 1st ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
20 xp2nd ( ( 𝐹𝑥 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
21 17 20 syl ( ( 𝜑𝑥𝐴 ) → ( 2nd ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
22 21 rexrd ( ( 𝜑𝑥𝐴 ) → ( 2nd ‘ ( 𝐹𝑥 ) ) ∈ ℝ* )
23 icombl ( ( ( 1st ‘ ( 𝐹𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑥 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ∈ dom vol )
24 19 22 23 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ∈ dom vol )
25 16 24 eqeltrd ( ( 𝜑𝑥𝐴 ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol )
26 25 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol )
27 13 26 jca ( 𝜑 → ( ( [,) ∘ 𝐹 ) Fn 𝐴 ∧ ∀ 𝑥𝐴 ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) )
28 ffnfv ( ( [,) ∘ 𝐹 ) : 𝐴 ⟶ dom vol ↔ ( ( [,) ∘ 𝐹 ) Fn 𝐴 ∧ ∀ 𝑥𝐴 ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) )
29 27 28 sylibr ( 𝜑 → ( [,) ∘ 𝐹 ) : 𝐴 ⟶ dom vol )
30 fco ( ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ ( [,) ∘ 𝐹 ) : 𝐴 ⟶ dom vol ) → ( vol ∘ ( [,) ∘ 𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
31 9 29 30 syl2anc ( 𝜑 → ( vol ∘ ( [,) ∘ 𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
32 coass ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( vol ∘ ( [,) ∘ 𝐹 ) )
33 32 a1i ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( vol ∘ ( [,) ∘ 𝐹 ) ) )
34 33 feq1d ( 𝜑 → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ↔ ( vol ∘ ( [,) ∘ 𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) )
35 31 34 mpbird ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
36 35 ffnd ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) Fn 𝐴 )
37 19 21 voliooico ( ( 𝜑𝑥𝐴 ) → ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) (,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) )
38 1 5 fssd ( 𝜑𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) )
39 38 adantr ( ( 𝜑𝑥𝐴 ) → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) )
40 39 15 fvvolioof ( ( 𝜑𝑥𝐴 ) → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) (,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) )
41 39 15 fvvolicof ( ( 𝜑𝑥𝐴 ) → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑥 ) ) [,) ( 2nd ‘ ( 𝐹𝑥 ) ) ) ) )
42 37 40 41 3eqtr4d ( ( 𝜑𝑥𝐴 ) → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) )
43 7 36 42 eqfnfvd ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) = ( ( vol ∘ [,) ) ∘ 𝐹 ) )