Step |
Hyp |
Ref |
Expression |
1 |
|
volioo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
2 |
1
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
3 |
|
iftrue |
⊢ ( 𝐴 ≤ 𝐵 → if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
5 |
2 4
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
6 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
7 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ¬ 𝐴 ≤ 𝐵 ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
10 |
8 9
|
ltnled |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵 ) ) |
12 |
7 11
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 < 𝐴 ) |
13 |
|
vol0 |
⊢ ( vol ‘ ∅ ) = 0 |
14 |
13
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( vol ‘ ∅ ) = 0 ) |
15 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 ∈ ℝ ) |
16 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐴 ∈ ℝ ) |
17 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 < 𝐴 ) |
18 |
15 16 17
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → 𝐵 ≤ 𝐴 ) |
19 |
9
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
20 |
8
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ* ) |
21 |
|
ioo0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
24 |
18 23
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
25 |
24
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol ‘ ∅ ) ) |
26 |
10
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ¬ 𝐴 ≤ 𝐵 ) |
27 |
26
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
28 |
14 25 27
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
29 |
6 12 28
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
30 |
5 29
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |